Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 241))

Abstract

Silicon nitride ceramics containing 10 vol.% Yb2O3 and 0.5 vol.% Al2O3 were densified by gas pressure sintering at 1850°C and 10 MPa nitrogen pressure. The microstructural development of the samples was decisively controlled by the α/β-ratio of the initial starting powder and the sintering conditions. The resulting microstructures varied from fine grained to coarse-grained. Bending bars for quench tests in water at room temperature were machined out of larger sintered pieces in order to study the thermal shock behaviour. The remaining strength after quenching was measured in 4-point bending as a function of the quench temperature. The influence of the microstructure on the strength decrease (catastrophic or continuous) and the ultimate strength are discussed in terms of increasing fracture resistance curves for high strength ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Hoffmann and G.Petzow, “Microstructural Design of Si3N4 Based Ceramics”, in: I.W. Chen et al. (eds.), Silicon Nitride - Scientific and Technological Advances, MRS Symposium Proceedings, Vol. 287, MRS Pittsburgh (USA), (1993), 3.

    Google Scholar 

  2. G. Petzow und M.J. Hoffmann, “Grain Growth Studies in Si3N4-Ceramics”, in Materials Science Forum, Vols 113–115, Trans Tech Publications, Switzerland, (1993), 91.

    Google Scholar 

  3. P.F. Becher, H.T. Lin, M.J. Hoffmann, and I.W. Chen, “Influence of Microstructure on the Fracture Resistance of Silicon Nitride Ceramics”, in: I.W. Chen et al. (eds.), Silicon Nitride - Scientific and Technological Advances, MRS Symposium Proceedings, Vol. 287, MRS Pittsburgh (USA), (1993), 147.

    Google Scholar 

  4. A.G. Evans, “Perspective on the Development of High-Toughness Ceramics”, J.Am.Cer.Soc. 73, [2], (1990), 187.

    Article  CAS  Google Scholar 

  5. D.P.H. Hasselman, “Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics”, J.Am.Cer.Soc. 52, [11], (1969), 600.

    Article  CAS  Google Scholar 

  6. D.P.H. Hasselman,“Thermal Stress Resistance Paramaters for Brittle Refractory Ceramics: A Compendium”, Ceramic Bulletin, 49, [12] (1970), 1033.

    Google Scholar 

  7. M.V. Swain,“R-Curve Behavior and Thermal Shock Resistance of Ceramics”, J.Am.Cer.Soc. 73, [3], (1990), 621.

    Article  Google Scholar 

  8. E.H. Lutz, M.V. Swain, N. Claussen, “Thermal Shock Behavior of Duplex Ceramics”, J.Am.Cer. Soc. 74, [1], (1991), 19.

    CAS  Google Scholar 

  9. R. Raj, F.F. Lange, “Crystallisation of Small Quantities of Glass (or Liquid) Segregated in Grain Boundaries”, Acta met., 29, (1981), 1993.

    Google Scholar 

  10. E. Hampp, “Phase relationships, Sintering behaviour and Properties of Ceramics Based on the System SisN4-Ybz03-SiOz”, Ph.D.Thesis, University Stuttgart, Germany, (1993), (in German).

    Google Scholar 

  11. J.S.Vetrano, H.J.Kleebe, E.Hampp, M.J.Hoffmann, R.M.Cannon, “Epitaxial Deposition of Silicon Nitride During Post-Sintering Heat Treatment”, J.Mater.Sci.Letters, 11, (1992), 1249.

    Google Scholar 

  12. A.F. Emery, G.E. Walker, J.A. Williams,“A Greens Function for the Stress Intensity Factors of Edge Cracks and its Application to Thermal Stresses”, J.Basic Eng. 91, (1969), 618.

    Article  Google Scholar 

  13. D. Stahn, “ Behaviour of Cracks in Shock-Cooled Glass Cylinders”, Glastechn. Ber. 50, (1977), 206.

    Google Scholar 

  14. A.F. Emery, A.S. Kobayashi, “Transient Stress Intensity Factors for Edge and Corner Cracks in Quench-Test Specimen”, J.Am.Cer.Soc. 63, [7,8], (1980), 410.

    Article  CAS  Google Scholar 

  15. X-R. Wu, A.J. Carlsson, “Weight Functions and Stress Intensity Factor Solutions”, Pergamon Press, Oxford (England ), 1991.

    Google Scholar 

  16. H.-A. Bahr, G. Fischer, H.J. Weiss, “Thermal Shock Crack Patterns Explained by Single and Multiple Crack Propagation”, J.Mater.Sci, 21, (1986), 2716.

    Google Scholar 

  17. H.-A. Bahr, T. Fett, I. Hahn, D. Munz, I. Pflugbeil, “Fracture Mechanics Treatment of Thermal Shock and the Effect of Bridging Stresses”, this Proceedings volume.

    Google Scholar 

  18. G.A. Schneider, F. Magerl, I. Hahn, G. Petzow, “In-situ Oberservations of Unstable and Stable Crack Propagations and R-Curve Behaviour in Thermally Loaded Discs”, this Proceedings volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoffmann, M.J., Schneider, G.A., Petzow, G. (1993). The Potential of Si3N4 for Thermal Shock Applications. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics