Skip to main content

Thermal Fatigue of Glass

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 241))

Abstract

Damage under thermal fatigue conditions at high temperatures may be very complex since subcritical crack growth, the effects of oxidation, crack healing and crack tip blunting will exert an influence. Fracture mechanical analysis is generally possible at moderate temperatures if subcritical crack growth is the dominant effect. Most ceramic materials are sensitive to thermal shock and thermal fatigue. Due to inhomogeneous temperature distributions in rapidly cooled or heated ceramic components, thermal stresses are generated which are responsible for the extension of existing cracks. If there is only one single severe thermal cycle, it is called “thermal shock.” But also a large number of cycles implying moderate stresses may cause an incremental increase in damage. This effect is important to materials exhibiting subcritical crack growth and is called “thermal fatigue.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Kingery, “Factors affecting thermal shock resistance of ceramic materials”, J. Amer. Ceram. Soc. 38 (1955), 3–15.

    Article  Google Scholar 

  2. D.P.H. Hasselman, “Elastic energy at fracture and surface energy as design criteria for thermal shock”, J. Amer. Ceram. Soc. 46 (1963), 535–540.

    Article  CAS  Google Scholar 

  3. D.P.H. Hasselman, “Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics”, J. Amer. Ceram. Soc. 52 (1969), 600–604.

    Article  CAS  Google Scholar 

  4. D.P.H. Hasselman, “Rolle der Bruchzähigkeit bei der Temperaturwechselbeständigkeit feuerfester Erzeugnisse”, Ber. der Deutschen Keramischen Gesellschaft 54 (1977), 195–201.

    CAS  Google Scholar 

  5. W. Pompe, H.A. Bahr, G. Hille, W. Kreher, B. Schultrich, H.J. Weiss, “Mechanical properties of brittle materials–modern theories and experimental evidence, Current Topics in Material Science, 12 (1985), 205–483.

    CAS  Google Scholar 

  6. H.A. Bahr, H.J. Weiss, “Heuristic approach to thermal shock damage due to single and multiple crack growth”, Theor. and Appl. Fract. Mech. 6 (1986), 57–62.

    Article  Google Scholar 

  7. A.G. Evans, E.A. Charles, “Structural integrity in severe thermal environments”, J. Amer. Ceram. Soc. 60 (1977), 22–28.

    Article  CAS  Google Scholar 

  8. H.S. Carslaw, J.C. Jaeger, “Conduction of Heat in Solids”, Clarendon Press, Oxford, 1959.

    Google Scholar 

  9. T. Fett, K. Keller, D. Munz, J. Kübler, Subcritical surface crack growth in borosilicate glass under thermal fatigue, Theor. and Appl. Fract. Mech. 16 (1991), 27–34.

    Article  Google Scholar 

  10. H. Nisitani, D.H. Chen, Stress intensity factors for a semi-elliptic surface crack in a shaft under tension, Trans. Jap. Soc. Mech. Engrs. 50(1984)1077–1082.

    Google Scholar 

  11. M. Shiratori, T. Miyoshi, K. Tanikawa “Analysis of stress intensity factors for surface cracks subjected to arbitrarily distributed surface stresses”, Trans. Japan Soc. Mech. Engrs. 52 (1986), 390–398.

    Google Scholar 

  12. T. Fett, D. Munz, J. Neumann, “Local stress intensity factors for surface cracks in plates under power-shaped stress distributions”, Engng. Fract. Mech. 36 (1990), 647–651.

    Article  Google Scholar 

  13. T. Fett, K. Germerdonk, A. Großmüller, K. Keller, D. Munz, Subcritical crack growth and threshold in borosilicate glass, J. Mater. Sci. 26(1991)253–257.

    Google Scholar 

  14. T. Fett, K. Keller, D. Munz, “Determination of subcritical crack growth on glass in water from lifetime measurements on Knoop cracked specimens”, J. Mater. Sci. 23 (1988), 798–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fett, T., Keller, K., Kübler, J., Munz, D. (1993). Thermal Fatigue of Glass. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics