Skip to main content

Significance of Non-Linear Stress-Strain and R-Curve Behaviour on Thermal Shock of Ceramics

  • Chapter
  • 435 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 241))

Abstract

Observations are presented that show compelling evidence for the importance of non-linear elastic behaviour of ceramic and refractory materials if they survive severe thermal shocks. It is also shown that these same materials exhibit significant R-curve behaviour due to a number of mechanisms, with the most thermal shock resistant exhibiting the most extended toughness increment over a considerable crack extension. It has been found for a number of composite materials that the strength and thermal shock resistance correlates with a so called internal stress intensity factor. A simple fracture mechanics relationship is developed that attempts to explain a number of the observed effects, including the onset of non-linear behaviour, the strength of the composite and the thermal shock resistance of such materials. An additional feature is the predicted specimen size dependent thermal shock behaviour of ceramic materials which is similar to observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J.Hughanand M.V.Swain,“Physical properties of some weak porous materials, Part 3:Resistance to thermal shock of a quartz-free pottery body”, Ceramics adding the value,Vol l, pp54–57(1992)Edt M. J.Bannister

    Google Scholar 

  2. D.P.H.Hasselman, “Unified theory of thermal shock fracture initation and crack propogation in brittle ceramics”, J.Am.Cer.Soc., 52, 600–4 (1969)

    Google Scholar 

  3. G.A.Gogotsi, Ya.L.Grushevsky and K.K.Strelov,“The significance of non-elastic deformation in the fracture of heterogeneous ceramic materials”, Ceramurgia Int., 4,113–18(1978).

    Google Scholar 

  4. M.V. Swain, “Quasi-brittle behaviour of ceramics and its relevance for thermal shock”, Eng. Frac. Mechs., 40, 871–77 (1991)

    Google Scholar 

  5. M.V. Swain,“R-curve behaviour and thermal shock resistance of ceramics” J. Am. Ceram. Soc., 73, 621–28(1990)

    Google Scholar 

  6. P.F.Becher, D.Lewis, K.Karmen and A.Gonzalez, “Thermal shock resistance of ceramics: size and geometry effects in quench tests”,Bull Am. Ceram. Soc., 59, 542–45(1980)

    Google Scholar 

  7. E.H. Lutz, M.V. Swain and N.Claussen, “Thermal shock behaviour of duplex ceramics”, J. Am. Ceram. Soc., 74, 11–18(1991)

    Google Scholar 

  8. E.H. Lutz and M.V. Swain,“Mechanical and thermal shock properties of duplex ceramics a review”, Materials Forum, 15, 307–21 (1991)

    CAS  Google Scholar 

  9. C. J.Bettles, E.H.Lutz and M.V.Swain, “Mechanical properties of dispersion containing ceramics”, in press

    Google Scholar 

  10. M.P.Borom, “Dispersion strengthened glass matrices-glass ceramics; a case in point”, J.Am.Ceramn.Soc., J. Am.Ceram.Soc.,60, 973–82(1977)

    Google Scholar 

  11. A.G.Evans and E.A.Charles, “Structural integrity in severe thermal env ironments”,J. Am. Ceram. Soc., 60, 22–28(1977)

    Google Scholar 

  12. G.G.Trantina and J.T.A.Roberts,pp779–790 in Fracture Mechanics of Ceramics Vol 2,Edt. R.C.Bradt et al, Plenum Press N.Y. 1974

    Google Scholar 

  13. M.Taya, S.Hayashi, A.S.Kobayashi and H.S.Yoon,“Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress”, J.Am.Ceram.Soc. 33,1382–91(1990)

    Google Scholar 

  14. N.Miyata, K.Tanigawa and H.Jinno, “Fracture behaviour of brittle matrix particulate composites with thermal expansion mismatch”, p87–102, Frac.Mech.of Ceramics, Vol. 6, Edts R.C.Bradt, D.P.H.Hasselman and F.F.Lange Plenum Press N. Y. 1985

    Google Scholar 

  15. D.P.H.Hasselman and R.M.Fulrath, “Proposed fracture theory of a dispersion-strengthened glass matrix”, J. Am. Ceram. Soc., 49, 68–72 (1966)

    Article  Google Scholar 

  16. T-Z.Chuang and Y-W.Mai, “Flexural behaviour of strain softening sol ids”,Int.J.So1. and Struct., 25,1427–43 (1989)

    Google Scholar 

  17. E.H. Lutz & M.V. Swain,“Stress-strain behaviour of duplex ceramics: 1, observations”, J. Am. Ceram. Soc., 75, 1729 (1992)

    Article  CAS  Google Scholar 

  18. M.K.Bannister and M.V.Swain, “Thermal shock of a titanium di-boride composite”, Ceramics Int., 16,77–83(1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Swain, M.V. (1993). Significance of Non-Linear Stress-Strain and R-Curve Behaviour on Thermal Shock of Ceramics. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics