Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 241))

Abstract

Following the basic ideas of Hasselman on the close relation between thermal stress fracture initiation and retained strength ,during the last 6 years significant progress has been made in the understanding of the thermal shock applying the energy release function concept. A satisfying description of the unstable and the stable stage of the crack propagation as well as of the crack pattern formation is possible. The theory also offers an understanding of the R- curve effect under thermal shock conditions. The thermal shock behavior is an example of a larger group of physical and chemical structure changes which are coupled with the formation of a stress field. For this group of phenomena a high degree of universality in the general behavior is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahr, H.-A., Weiss, H.-J., Maschke, H.-G., Meissner, F. (1988)’ Multiple crack propagation in a strip caused by thermal shock’,Theoret.Appl.Fracture Mech., 10, 219–226

    Google Scholar 

  • Bahr, H.-A. (1992) ‘Multiple crack propagation under theral load’,Workshop on Thermal shock, Ringberg, Nov. 8th-13th

    Google Scholar 

  • Cooper, A.R. (1978) ‘Quantitative theory of cracking and warping during drying of clay bodies’, in Onda,G.Y.,Hench,L.L. (eds.) ‘Ceramics processing before firing’, Wiley pp. 261–276

    Google Scholar 

  • Gille, G. (1991), private communication

    Google Scholar 

  • Hasselman, D.P.H. (1969) ‘Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics’,J.Am.Ceram.Soc.,52,600–604

    Google Scholar 

  • Kingery, W.D. (1955) ‘Factors affecting thermal shock resistance of ceramic materials’, J.Am.Ceram.Soc., 38, 3–15

    Article  Google Scholar 

  • Kirchhoff, G. (1992) ‘ Thermal shock fracture by laser irradiation„ Workshop on Thermal Shock, Ringberg, Nov.,8th–13th

    Google Scholar 

  • Lutz, H.E. (1989)’Aufbau und Eigenschaften von Al2O3 - und ZrO2 -Keramiken mit kugligen Druckzonen’,Thesis, TU Hamburg - Harburg

    Google Scholar 

  • Munz, D. (1992) ‘Fracture mechanics treatment of thermal shock and fatigue and the effect of bridging stresses’,Workshop on Thermal Shock,Ringberg, Nov. 8th- 13th

    Google Scholar 

  • Nemat - Nasser, S., Ohtsubo, H. (1978) ‘ Fluid flow and heat transfer trough hydraulically induced fractures in hot, dry rock masses ‘, J. of Pressure Vessel Technology 100, 277–284

    Google Scholar 

  • Pompe, W., Bahr, H.-A., Gille, G., Kreher, W.,Schulltrich, B., and Weiss, H.-J. (1985); Mechanical properties of brittle materials - Modern theories and experimental evidence’, in Kaldis,E. (ed.) ‘Current topics in materials science’,North- Holland Publ., Amsterdam, pp. 316–360

    Google Scholar 

  • Scheider, G.,Petzow, G.(1991),’Thermal testing of ceramics - a new testing method ‘, J.Am.Ceram.Soc 74, 98–102

    Google Scholar 

  • Schubert, Ch., Bahr, H.-A., Weiss, H.-J. (1986),’ Crack propagation and thermal shock damage in graphite disks heated by moving elctron beam ‘,Carbon 24, 21–28

    Google Scholar 

  • Swain, M. (1990) ‘R - curve behavior and thermal shock resistance of ceramics ‘,J.Am.Ceram.Soc. 73, 621–28

    Google Scholar 

  • Weiss, H.-J. (1992),private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pompe, W.E. (1993). Thermal Shock Behavior of Ceramic Materials-Modelling and Measurement. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics