Skip to main content

Basic wood chemistry and cell wall ultrastructure

  • Chapter

Abstract

All woods are composed of cellulose, hemicelluloses and lignin. Cellulose and hemicelluloses are polysaccharides while lignin is an oxygenated polymer of phenylpropane units. In addition there is a variable quantity of extraneous chemicals known collectively as extractives and small amounts of inorganic elements such as calcium, magnesium and potassium. The inorganic ash content is usually 0.1–0.3% by weight and rarely exceeds 0.5%, except in some tropical hardwoods where a high silica content (a few percent) can cause rapid wear and blunting of machine tools. In this chapter the structural components of wood -cellulose, the hemicelluloses and lignin — will be examined in turn while some features of extractives will be discussed briefly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, E. (1977) Lignin chemistry — past, present and future. Wood Sci. Technol., 11 (3), 169–218.

    Article  CAS  Google Scholar 

  • Atalla, R.H. (1990) The structures of cellulose. In: Materials interactions relevant to the pulp, paper and wood industries (eds D.F. Caulfield, J.D. Passaretti and S.F. Sobczynski),

    Google Scholar 

  • Atalla, R.H. (1990) The structures of cellulose Mater. Res. Soc. Symp. Proc. 197, 89–98.

    Article  CAS  Google Scholar 

  • Bailey, I.W. and Kerr, T. (1935) The visible structure of the secondary wall and its significance in physical and chemical investigations of tracheary cells and fibres. J. Arnold Arbor., 16, 273–300.

    CAS  Google Scholar 

  • Blackwell, J. and Kolpak, F.J. (1976) Cellulose microfibrils as disordered arrays of elementary fibrils, in Proc. 8th Cellulose Conf. (ed. T.E. Timell),

    Google Scholar 

  • Blackwell, J. and Kolpak, F.J. (1976) Cellulose microfibrils as disordered arrays of elementary fibrils, App. Polym. Symp. 28, Vol. 2, Wiley, New York, pp. 751–61.

    Google Scholar 

  • Brown, R.M. (1989) Cellulose biogenesis and a decade of progress: a personal perspective, in Cellulose and Wood: Chemistry and Technology (ed. C. Schuerch), Wiley Interscience, New York, pp. 639–57.

    Google Scholar 

  • Butterfield, B.G. and Meylan, B.A. (1980) Three-dimensional Structure of Wood, 2nd edn, Chapman &; Hall, London.

    Book  Google Scholar 

  • Corson, S.R., and Lloyd, J.A. (1987) Refiner mill effluent: Part 2, Composition of dissolved solids fraction. Paperi ja Puu, 60 (8), 435–9.

    Google Scholar 

  • Côté, W.A. (1967) Wood Ultrastructure: An Atlas of Electron Micrographs, Univ. Washington Press, Seattle.

    Google Scholar 

  • Erdtman, H. (1952) Chemistry of some heartwood constituents of conifers and their physiological and taxonomic significance, in Progress in Organic Chemistry (ed. J.W. Cook), Vol 1, Butterworths, London, pp. 22–63.

    Google Scholar 

  • Fengel, D. and Wegener, G. (1984) Wood: Chemistry, Ultrastructure, Reactions, De Gruyter, Berlin.

    Google Scholar 

  • Fujita, M., Takabe, T. and Harada, H. (1983) Deposition of cellulose, hemicelluloses and lignin in the differentiating tracheids, in Internat. Symp. on Wood and Pulping Chemistry, Vol. 1, Jap. Tech. Assoc. Pulp Pap. Ind., pp. 14–9.

    Google Scholar 

  • Fukazawa, K. and Imagawa, H. (1983) Ultraviolet and fluorescence microscopic studies of lignin, in Internat. Symp. on Wood and Pulping Chemistry, Vol. 1, Jap. Tech. Assoc. Pulp Pap. Ind., pp. 20–3.

    Google Scholar 

  • Gardner, J.A.F. and Barton, G.M. (1960) The distribution of dihydroquercetin in Douglas fir and western larch. For. Prod. J. 10 (3), 171–3.

    CAS  Google Scholar 

  • Gardner, J.A.F. and Hillis, W.E. (1962) The influence of extractives on the pulping of wood, in Wood Extractives and their Significance to the Pulp and Paper Industries (ed. W.E. Hillis), Academic Press, New York, pp 367–403.

    Google Scholar 

  • Gardner, K.H. and Blackwell, J. (1974) The structure of native cellulose. Biopolym, 13, 1975–2001.

    Article  CAS  Google Scholar 

  • Goring, D.A.I. (1983) Some recent topics in wood and pulping chemistry, in Internat. Symp. on Wood and Pulping Chemistry, Vol. 1, Jap. Tech. Assoc. Pulp Pap. Ind., pp. 3–13.

    Google Scholar 

  • Goring, D.A.I., Vuong, R., Gancet, C. and Chanzy, H. (1979) The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy. J. App. Polym. Sci. 24, 931–6.

    Article  CAS  Google Scholar 

  • Guthrie, R.D. (1974) Guthrie and Honeyman’s Introduction to Carbohydrate Chemistry, Clarendon Press, Oxford.

    Google Scholar 

  • Hathway, D.E. (1962) The use of hydroxystilbene compounds as taxomic tracers in the genus Eucalyptus. Biochem. J. 83, 80–4.

    PubMed  CAS  Google Scholar 

  • Harris, J.F. (1975) Acid hydrolysis and dehydration reactions for utilizing plant carbohydrates, in Proc. 8th Cellulose Conf. (ed. T.E. Timell),

    Google Scholar 

  • Harris, J.F. (1975) Acid hydrolysis and dehydration reactions for utilizing plant carbohydrates, App. Polym. Symp. 28, Vol. 1, Wiley, New York, pp. 131–44.

    Google Scholar 

  • Harris, J.M. (1965) Enrichment of Radiata Pine Heartwood with Extractives. Proceedings of a meeting of IUFRO (Section 41, For. Prod.), Melbourne, Vol. 1. Distributed Div. For. Prod. Res., CSIRO, Melbourne.

    Google Scholar 

  • Hemingway, R.W. (1969) Thermal instability of fats relative to surface wettability of yellow birchwood (Betula lutea). TAPPI, 52 (11), 2149–55.

    CAS  Google Scholar 

  • Hieta, S., Kuga, S. and Usuda, M. (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolym, 23, 1807–10.

    Article  CAS  Google Scholar 

  • Hillis, W.E. (ed.) (1962) Wood Extractives and their Significance to the Pulp and Paper Industries, Academic Press, New York.

    Google Scholar 

  • Hillis W.E. (1987) Heartwood and Tree Exudates, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Hon, D. N.-S. and Shiraishi, N. (1991) Wood and Cellulosic Chemistry, Marcel Dekker, New York.

    Google Scholar 

  • Kai, Y. (1991) Chemistry of extractives, in Wood and Cellulosic Chemistry (eds D.-S. Hon and N. Shiraishi), Marcel Dekker, New York.

    Google Scholar 

  • Kerr, A.J. and Goring, D.A.I. (1975) The ultrastructural arrangement of the wood cell wall. Cellulose Chem. Tech., 9 (6), 563–73.

    Google Scholar 

  • Kibblewhite, R.P. and Okayama, T. (1986) Some unique properties of neutral sulphite-anthraquinone pulp fibres. APPITA, 39 (2), 134 – 8.

    CAS  Google Scholar 

  • Lewin, M. and Roldan, L.G. (1975) The oxidation and alkaline degradation of mercerized cotton: a morphological study. Text. Res. J., 45 (4), 308–14.

    Article  CAS  Google Scholar 

  • Lloyd, J. A. (1978) Distribution of extractives in Pinus radiata early wood and latewood. NZJ. For. Sci., 8 (2), 288–94.

    Google Scholar 

  • Marchessault, R.H. and Sundararajan, P.R. (1983) Cellulose, in The Polysaccharides (ed. G.O. Aspinall), Vol. 2, Academic Press, New York, pp. 11–95.

    Google Scholar 

  • Marx-Figini, M. (1969) On the biosynthesis of cellulose in higher and lower plants, in Proc. 6th Cellulose Conf. (ed. R.H. Marchessault),

    Google Scholar 

  • Marx-Figini, M. (1969) On the biosynthesis of cellulose in higher and lower plants, J. Polym. Sci. Part C: Polym. Symp., 28, 57–67.

    Article  Google Scholar 

  • Meier, H. (1985) Localization of polysaccharides in wood cell walls, in Biosynthesis and Biodegradation of Wood Components (ed. T. Higuchi), Academic Press, Orlando, pp. 43–50.

    Google Scholar 

  • Minor, J.L. (1983) Chemical linkage of polysaccharides to residual lignin in pine kraft pulps, in Internat. Symp. on Wood and Pulping Chemistry, Vol. 1, Jap. Tech. Assoc. Pulp Pap. Ind., pp. 153–8.

    Google Scholar 

  • Panshin A.J. and de Zeeuw, C. (1980) Textbook of Wood Technology, 4th edn, McGraw-Hill, New York.

    Google Scholar 

  • Preston, R.D. (1974) The Physical Biology of Plant Walls, Chapman &; Hall, London.

    Google Scholar 

  • Saka, S. and Goring, D.A.I. (1985) Localization of lignins in wood cell walls, in Biosynthesis and Biodegradation of Wood Components (ed. T. Higuchi), Academic Press, Orlando, pp. 51–62.

    Google Scholar 

  • Saka, S. and Thomas, R.J. (1982) A study of delignification in lobolly pine tracheids by the SEM-EDAX technique. Wood Sci. Technol. 16, 167–79.

    Article  CAS  Google Scholar 

  • Sarko, A. (1986) Recent X-ray crystallographic studies of cellulose, in Cellulose: Structure, Modification and Hydrolysis (eds R.A. Young and R.M. Rowell), Interscience, New York, pp. 29–49.

    Google Scholar 

  • Scallan, A.M. (1971) A quantitative picture of the fringed micellar model of cellulose. Text. Res. J., 41 (8), 647–53.

    CAS  Google Scholar 

  • Sjöström, E. (1981) Wood Chemistry: Fundamentals and Applications, Academic Press, Orlando.

    Google Scholar 

  • Statton, W.O. (1967) The meaning of crystallinity when judged by X-rays, in The Meaning of Crystallinity in Polymers (ed. F.P. Price),

    Google Scholar 

  • Statton, W.O. (1967) The meaning of crystallinity when judged by X-rays, J. Polym. Sci. Part C: Polym. Symp., 18, 33–50.

    Article  Google Scholar 

  • Suckling, I.D., Pasco, M. and Gifford, J. (1993) Tappi Environmental Conference, Boston, March.

    Google Scholar 

  • Timell, T.E. (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1 (1), 45–70.

    Article  CAS  Google Scholar 

  • Uprichard, J.M. (1963) The extractives content of New Zealand grown larch species (Larix decidua and Larix leptolepis). Holzforschung, 17 (5), 129–34.

    Article  CAS  Google Scholar 

  • Uprichard, J.M. (1971) Cellulose and lignin content in Pinus radiata D. Don: within-tree variation in chemical composition, density and tracheid length. Holzforschung, 25 (4), 97–105.

    Article  CAS  Google Scholar 

  • Uprichard, J.M. and Lloyd, J.A. (1980) Influence of tree age on the chemical composition of radiata pine. NZJ. For. Sci., 10 (3), 551–7.

    CAS  Google Scholar 

  • Wayman, M and Parekh, S.R. (1990) Biotechnology of Biomass Conversion, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Wilson, K. and White, D.J.B. (1986) The Anatomy of Wood: Its Diversity and Variability, Stobart & Son, London.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 J.C.F. Walker

About this chapter

Cite this chapter

Walker, J.C.F. (1993). Basic wood chemistry and cell wall ultrastructure. In: Primary Wood Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8110-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8110-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8112-7

  • Online ISBN: 978-94-015-8110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics