Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 228))

  • 264 Accesses

Abstract

In this paper, we review the main classes of light detectors. The most important modes of light absorption are identified, and the corresponding detectors families are described: first, the photocathode which is based on the photoemissive effect and the main use of which being the photomultipliers. Then, within the family of the interband absorption detectors, principally characterized by their quantum efficiency, their detectivity, the signal-to-noise ratio and the bandwidth, pin photodiodes and avalanche photodiodes are presented. A special emphasis has been put on new quantum devices as effective mass filters and superlattice avalanche photodiodes. Finally, new superlattice far infrared detectors using intersubband absorption and waveguide integrated with diode (using evanescent field absorption process) are reviewed. At last, the fabrication of such devices is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tybulewicz A., (1964), in Thermoelectric properties of semiconductors, V.A. Kutasov Ed.

    Google Scholar 

  2. Sommer A., (1968), in Photoemissive Materials, Wiley and Son Ed., New York

    Google Scholar 

  3. Miya T., (1979) „ Electronics Lett., 15,106–108.

    Article  ADS  Google Scholar 

  4. Gebbie H.A., (1951), Atmospheric transmission in the 1 to 14μm region, Proc. Royal Soc., A206, 81–107

    ADS  Google Scholar 

  5. Mandel L., (1963), Fluctuations of light beams, in Progress in Optics, vol. 2, E. Wolf Ed., Amsterdam, North Holland.

    Google Scholar 

  6. Kruse P. W., McGlauchlin L.D. and McQuistan R.B., (1969), Element of Infrared Technology, Wiley (Interscience), New-York.

    Google Scholar 

  7. Meichior H., Fisher M.B. and Arams F.R., (1970), Photodetectors for Optical communication systems, Proc. IEEE, 58, 1466–1485.

    Article  Google Scholar 

  8. Loebner E.F., (1959), Solid State Optoelectronic, RCA Rev, XX, 715–743.

    Google Scholar 

  9. Moss J.S., (1959), in Optical properties of Semiconductors, Butterworths Scientific Publications, London.

    Google Scholar 

  10. Brattain W.H. and Briggs H.B., (1949), The optical constants of germanium in the infrared and visible range, Phys rev. 75, 1705–1710.

    Article  ADS  Google Scholar 

  11. Brooks H., (1955), in Advances in Electronics and Electron Physics, vol.7, Academic Press, N.Y.

    Google Scholar 

  12. Bardeen J., Blatt F.A. and Hall L.H., (1954/6), Indirect transitions from the Valence to the Conduction Bands, Photoconductivy Conference Wiley, N.Y., 146–155

    Google Scholar 

  13. Landolt and Bornstein, (1982), Numerical Data and functional Relationships in Science and Technology, Group III, vol. 17a, Springer, Berlin.

    Google Scholar 

  14. Fan H.Y., (1956), Infrared Absoeption in Semiconductors, Rep. Prog. Phys., 19, 107–155.

    Article  ADS  Google Scholar 

  15. Knox R.S., (1963), in Theory of Excitons, Solid State Physics, H. Ehrenreich, F. Seitz and D. Turnbull Ed., Academic Press, N.Y.

    Google Scholar 

  16. Johnson E.J., Absorption near the Fundamental Edge, in Semiconductor and Semimetal, vol.3, 153–258.

    Google Scholar 

  17. Bastard G., (1981), Superlattice band structure in envelope-function approximation, Phys. Rev. B24, 5693–5697.

    Google Scholar 

  18. Bastard G. in Wave Mechanics applied to semiconductor herostructures, Les Ed. de Physiques, Paris, 1988.

    Google Scholar 

  19. Lshibushi T., Tarucha S., and Okamoto H., (1981), Exciton associated optical absorption spectra of ALAs/GaAs superlattice at 300K, Int. symp. GaAs and Related Compounds, Oiso, 587–588.

    Google Scholar 

  20. Bastard G., Mendez E.E., Chang L.L. and Esaki L., (1982), Exciton binding energy in quantum wells, Phys. Rev. B26, 1974–1979.

    ADS  Google Scholar 

  21. Allen S.J., Tsui D.C. and Vinter B., (1976), On the absorption of infrared radiation by electrons in semiconductor inversion layers, Solid state Com., 20, 425–428.

    Article  ADS  Google Scholar 

  22. Schaich W.L. and Aschroft N.W., (1971), Model calculation in the Theory of Photoemission, Phys. Rev. B3, 2452–2465.

    ADS  Google Scholar 

  23. Berglund C.N. and Spicer W.E., (1964), Phys. Rev. A135, 465

    Google Scholar 

  24. Spicer W.E., (1958), Phys. Rev. 112, 114

    Article  ADS  Google Scholar 

  25. Duckett S.W, (1968), Phys. Rev, 166, 302

    Article  ADS  Google Scholar 

  26. Stuart R., Wooten F. and Spicer W.E., (1964),Monte Carlo Claculation Pertaining to the Transfert of Hot Electrons in Metals, Phys. rev. A135, 495–428.

    Article  ADS  Google Scholar 

  27. Scheer J.J. and Van Laar J., (1965), GaAs-Cs: A new type of photoemitter, Solid State Corn., 3, 189–193.

    Article  ADS  Google Scholar 

  28. Eden R.C., Moll J.L. and Spicer W.E., experimental evidence for optical population of x minima in GaAs, Phys. Rev. Lett., 18, 597–599.

    Google Scholar 

  29. Roaux E., Richard J.C. and Piaget C., (1985), Adv. Electronics Electron Physics, 64a, 71–75

    Google Scholar 

  30. Simon R.E. and Williams B.F., (1968), Secondary electron emission,IEEE Trans. Nucl. Sc., 15,n°3 167–170.

    Google Scholar 

  31. Van der Ziel A, (1950), in Noise, Prentice Hall, Englewood Cliff Ed., New Jersey.

    Google Scholar 

  32. Sommer H.S., (1970), in Semiconductor ans Semimetals, vol. 5, R.K. Williamson and A.G. Beer Ed., Academic Press N.Y.

    Google Scholar 

  33. Bube R.H., (1960), Photoconductivity of Solids, Wiley (Interscience), New-York.

    MATH  Google Scholar 

  34. Sze S., (1969), Physics of Semiconductor Devices, Wiley (Interscience), New-York.

    Google Scholar 

  35. Cummerow R.L., Phys Rev 95,n°9, 1954, 16

    Google Scholar 

  36. Jordan A.G., and Milnes A.G., (1960), Photoeffect on Diffused p-n Junctions with Integral Field Gradients, IRE Trans. Electron. devices, 242–251.

    Google Scholar 

  37. Caleki D., Palmier P.A. and Chomette A.,(1984), Hopping conduction in multiquantum well structures, J. Phys. C., 17, 5017–5030.

    Article  ADS  Google Scholar 

  38. Larsson A., Andrekson P.A., Eng S.T. and Yariv A., (1988), Tunable Superlattice p-i-n Photodetectors: Characteristics, Theory, and Applications, J. Quantum Electron., 24, 787801.

    Article  Google Scholar 

  39. Capasso F., Mahommed K., Cho A. Y., Hull R. and Hutchinson A.L., (1985), New Quantum Photoconductivity and Large Photocurrent Gain by Effective Mass Filtering in a Forward Biased Sperlattice p-n Junction, Phys. Rev. Lett., vo155, 10, 1152–1155.

    Article  ADS  Google Scholar 

  40. Capasso F., Mahommed K., Cho A.Y., Hull R. and Hutchinson A.L., (1985), Effective mass filtering: Giant amplification of the photocurrent in a semiconductor superlattice, Phys. Rev. Lett., vol.44, 420–422.

    Google Scholar 

  41. Forrest S.R., (1981), Performance of InxGa 1-xAsyP 1-y Photodiodes with dark Current Limited by Diffusion, Generation, Recombination, and Tunneling, IEEE J. Quantum Electron., QE17, 2, 217–226.

    Article  ADS  Google Scholar 

  42. Patillon J.N., Makram-Ebeid S., Chane J.P., Martin B.G., Martin G.M., (1984), Proc. Int. symp. GaAs and Relat; Compounds, Biarritz, 475–475.

    Google Scholar 

  43. 43DiDominicco M. and Svelto O., (1964), Solid-State Photodetection: A Comparison between Photodiodes and Photoconductors, Proc. IEEE, 52, 136–144.

    Article  Google Scholar 

  44. Lucovsky G., Schwarz R.F. and Emmons R.B., (1964), Transit-Time Considerations in p-i-n Diodes, J. Appl. Phys.; vol. 35, 622–628.

    Article  ADS  Google Scholar 

  45. Lucovsky G. and Emmons R.B., High frequency Photodiodes, Applied Optics, vol. 4, 697–02.

    Google Scholar 

  46. Bowers J.E., Burrus C.A. and McCoy R.J., (1985), InGaAs PIN photodetectors with modulation response to millimetre wavelengths, Electronic Lett., vol. 21, 812–814.

    Article  ADS  Google Scholar 

  47. Pearsall T., (1982), GaInAsP Alloy Semiconductors, Wiley (Interscience), New-York.

    Google Scholar 

  48. Wolff P.A. (1954), Phys. Rev., 95, 1415

    Article  ADS  Google Scholar 

  49. Capasso F., (1986), Physics of Avalanche Photodiodes, in Semiconductor and Semimetals, 22D, 1–172.

    Google Scholar 

  50. Pearsall T.P., Nahory R.E., Chelikowsky J.R., 1977, Threshold energies for impact ionisation by electrons and holes in GaAs-GaSb systems, Conf. Ser.-Inst. Phys., 33B, 331–335

    Google Scholar 

  51. Anderson C.L. and Crowell C.R., (1972), Threshold Energies for Electron Hole Pair Production by Impact Ionization in semiconductors, Phys. Rev. B25, 2267–2272

    ADS  Google Scholar 

  52. Ridley B.K., (1983), Lucky drift mechanism for impact ionisation in semiconductors, J. Phys. C, 16, 3373–3388.

    Article  ADS  Google Scholar 

  53. Burk M.G., (1985), An alternative expression for impact ionisation coefficient ina semiconductor derived using luky drift theory, J. Phys. C, 18, L477-L481.

    Article  ADS  Google Scholar 

  54. McKenzie and Burk M. G., (1986), A test of lucky drift theory of impact ionisation coeficcient using Monte Carlo simulation, J. Phys. C, 19, 1959–1973.

    Article  ADS  Google Scholar 

  55. Marslaw J. S., (1987), A lucky drift model, including a soft threshold enrgy, fitted to experimental measurments of ionisation coefficients, Solid States Electronics, vol. 30, n°2,125–132.

    Article  ADS  Google Scholar 

  56. Beni G. and Capasso F., (1979), Effect of carrier drift velocities on measured ionization coefficients in avalanching semiconductors, Phys Rev B 19, 2197–2203.

    Article  ADS  Google Scholar 

  57. Emmons R. B., (1967), Avalanching-Photodiode Frequency Response, J. appl. Phys., 38, 3705–3714.

    Article  ADS  Google Scholar 

  58. McIntyre R. J., (1966), Multiplication Noise in Uniform Avalanche Diodes, IEEE Trans. Electron Devices ED-13, 164–168.

    Article  Google Scholar 

  59. Forrest S. R. and Kim O.K., (1983), Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes, Solid State Electronics, 26, 951–968.

    Article  ADS  Google Scholar 

  60. Chin R., Holonyak N., Stillman G.E., Tang J.Y. and HEss K, (1980), Impact ionization in multilayered heterojunction structures, Electronics Letters, vol. 16, n° 12, 467–469.

    Google Scholar 

  61. Capasso F., (1982), IEEE Trans. Electron Devices, ED29, 1388.

    Article  ADS  Google Scholar 

  62. Blauvet H., Margalet S. and Yariv A., (1982), Single Carrier type dominated impact ionization in multilayered structures, Electronics Letters, vol. 18, n°9, 375–376.

    Article  ADS  Google Scholar 

  63. Capasso F., (1982), The channeling avalanche photodiode: a novel ultra low noise interdigited p-n junction detector, IEEE Trans. electron devices, ED29, 1388–1395;

    Article  ADS  Google Scholar 

  64. Brennan K., (1985), Theory of the Channeling Avalanche Photodiode, IEEE Trans. Electron Devices, ED32, 2467–2478.

    Article  Google Scholar 

  65. Brennan K., (1987), Comparison of multiquatum well graded barrier and doped quatum well GaInAs/AlInAs avalanche photodiodes: a theoritical approach, IEEE Trans. Electron Devices, ED23, 1273–1282.

    Google Scholar 

  66. Kagawa T., Kawamura Y., Asai Y., Naganuma M. and Mikami O., (1989), Appl. Phys. Lett., 55, 993–995.

    Article  ADS  Google Scholar 

  67. Capasso F., Tsang W.T., Hutchinson A.L. and Williams G.F., (1982), Enhancement of electron impact ionization in a superlattice: a new avalanche photodiode with large ionization ratip, Appl. Phys. Lett., 40, 38–40.

    Article  ADS  Google Scholar 

  68. Le Bellego Y., Praseuth J.P. and Scavannec A., (1991), Double Junction AlInAs/GaInAs multiquatum well avalanche photodiodes, Electronics Letter, 27, 2228–2230.

    Article  Google Scholar 

  69. Campbell J.C., Tsang W.T., Qua G.J., Jhonson B.C. and Bowers J.E., (1987), Wide-bandwidth InP/InGaAsP/InGaAs Avalanche Photodiodes grown by Chemical Beam Epitaxy, Proc. IEDM87, 233–236.

    Google Scholar 

  70. Pal B.B., Chakrabarti P., (1987), Theoritical Characterization of a Superlattice Avalanche Photodiode, Appl. Phys. A42, 173–177.

    ADS  Google Scholar 

  71. Brennan K., (1985), Theory of Electron and Hole Impact Ionization in Quatum Well and Staircase Superlattice Avalanche Photodiode Structures, IEEE Trans. Electron Devices, ED32, 2197–2205.

    Article  ADS  Google Scholar 

  72. Capasso F, Tsang W.T. and Williams G.F., (1983), Staircase Solid-State Photomultipliers and Avalanche Photodiodes with Enhanced Ionization rate Ratio, IEEE Trans. Electron Devices, ED30,381–390.

    Article  ADS  Google Scholar 

  73. Chui L.C., Smith J.S., Margalet S., Yariv A. and Cho A.Y., (1983), Application of internal photoemission from quatum well and heterojunction superlattices to infrared photodetectors, Infrared Phys., 23, 93–97.

    Article  ADS  Google Scholar 

  74. Levine B.F., Choi K.K., Bethea C.G., Walker J. and Malik R.J., (1987), New 10μm Infrared detector using intersubband absorption in resonant tunneling gaAsAs superlattice, Appl. Phys. Lett., 50, 1092–1094.

    Article  ADS  Google Scholar 

  75. Mendez E.E., (1986), Electronic Mobility in Semiconductor Heterostructures, IEEE Quantum Electron., QE22,1720–1727.

    Article  ADS  Google Scholar 

  76. Capasso F., Mohammed K. and Cho A.Y., (1986), Resonnant Tunneling Through Double Barriers, Perpendicular Quantum Transport Phenomena in Superlattices, and their Application, IEEE Quantum Electron., QE22, 1853–1869.

    Article  ADS  Google Scholar 

  77. Palmier J.F. and Chomette A., (1982), J. Phys., 43, 381.

    Article  Google Scholar 

  78. Esaki L. and Tsu R., (1970), Superlattice and Negative Differential Conductivity in Semiconductors, IBM J. Res. Develop., 14, 61–65.

    Google Scholar 

  79. Andrew S.R. and Miller B.A., (1991), Experimental and theoritical sudies of the performances of quantum well infrared detectors, IEEE

    Google Scholar 

  80. Stern F., (1974), Phys. Rev. Lett., 33, 960.

    Article  ADS  Google Scholar 

  81. Hasnain G., Levine B.F., Bethea C.G., Logan R.A., Walter R.A. and Malik R.J., (1989), GaAs/A1GAAs multiquatum well infrared detector arrays using etched grating, Appl. Phys. Lett., 54, 2515–2517.

    Article  ADS  Google Scholar 

  82. Levine B.LF., Bethea C.G., Hasnain G. and Malik R.J., (1989), GaAs/AlGaAs Quantum wel long wavelength infra-red (LWIR) detector with a detectivity comparable to HgCdTe, Electronics Lett., S70-S72.

    Google Scholar 

  83. Yang C.L., Pan D.S. and Somoaro R, (1989), Advantages of an indirect semiconductor quantum well system for infra-red detection, J. Appl. Phys., 65, 3253–3258.

    Article  ADS  Google Scholar 

  84. Karanascri R.P., Park J.S. and Wang K.L., (1991), Sil-xGex/Si multiple quantum well infra red detector

    Google Scholar 

  85. Takruchi H., Kasaya K, Kondo Y., Yasuka H., Oe K. and Imamura Y., (1989), Monolithic Integrated Coherent Receiver on InP Substrate, IEEE Phton. Technol. Lett., 1, 398–400.

    Article  ADS  Google Scholar 

  86. Chandrasekhar S., Campbell J.C., Dentai A.G., Joyner C.H., Quaand G.J. and Snell W.W, (1987), Integrated waveguide PIN photodiode by MOVPE regrowth, IEEE Elect. Dev. Lett., EDL8, 512.

    Article  Google Scholar 

  87. Döldissen W;, Fieller F., Kaiser R.and Mörl L., (1989), Butt coupled photodiodes integrated with Y branched optical waveguides on InP,Electron. Lett., 25, 35.

    Article  Google Scholar 

  88. Erman M., Jarry P., Gamonal R., Gentner J.L., Stephan P., and Guesdon C., (1988), Monolithically integrated PIN photodiode and optical waveguide: modelling and realization using chloride vapor phase epitaxy, J. Lghtwave Technol., 6, 399–405.

    Article  ADS  Google Scholar 

  89. Snyder A.W. and Love J.D., (1983), Optical waveguide Theory, Chapman and Hall Ed.

    Google Scholar 

  90. Wang S., (1985), Principles and Characteristics of Integratable Active and Passsive Optical Device, in Semiconductor and Semimetal, vol.22

    Google Scholar 

  91. Van ROey J., Van der Donk J. and Lagasse P., (1981), Beam Propagation Method: Analysis and Assessment, J. Opt. soc. Am., 71

    Google Scholar 

  92. Fert M.D. and Flick J.A., (1980), Computation of mode eigenfunctions in graded index optical fibers by propagation beam method, Appl. Opt., 19,

    Google Scholar 

  93. Optical Communication

    Google Scholar 

  94. Patillon J.N., Andre J.P. and Jay C., One step epitaxy integration of double heterostructure waveguides with dual balanced PIN photodiodes using MOVPE, submitted to ElectronicsLett.

    Google Scholar 

  95. Panish M.P., (1989), Molecular Beam Epitaxy, ATT Tecnical Journal, 68, n° 1, 43–50.

    Google Scholar 

  96. Tischler M.A., (1990), Advances in metallorganic vapor-phase epitaxy, IBM J. Res. Develop., 34, 828–847.

    Article  Google Scholar 

  97. Jay C., Chane J.P., Riglet P., Gamonal R., Patillon J.N., (1990), Proc of the irst Int. Con. on Epitaxial Growth, Budapest.

    Google Scholar 

  98. Cox J.T. and Hass G., (1964), Antireflection Coating for Optical and Infrared Materials, in Physics of Thin Films, vol2, G. Hass and R.E. Thun Ed., (Academic Press).

    Google Scholar 

  99. Thelen A., (1969), Design of Multilayer Interference Filters, in Physics of Thin Films, vo15, G. Hass and R.E. Thun Ed., (Academic Press).

    Google Scholar 

  100. Patillon J.N., Andre J.P., Chane J.P., Gentric P., Martin B.G., Martin G.M., (1990), InGaAs/InP avalanche photodiodes with separate absorption and multiplication regions grown by MOVPE, Philips J. Res., 44,455–464.

    Google Scholar 

  101. Patillon J.N., Andre J.P., Le Coz H., Lesiourd J.Y., Martin B.G. and Matrin G.M., (1990), Manufacturing high yield APMOVPE InGaAs/InP SAM-APD planar diodes, Proc. Opto 90, 89

    Google Scholar 

  102. Patillon J.N., Andre J.P., Chane J.P., Gentner J.L., Martin B.G. and Martin G.M., (1990), An optimized structure for InGaAs/InP photodiodes combining high performances, throughput and reliability, Philips J. Res., 44, 465–472

    Google Scholar 

  103. Putland P.A., (1990), Characterization and comparison of failure modes in II-V avalanche photodiodes, Electronic Lett., 26, 298–300.

    Article  Google Scholar 

  104. Tuck B., (1974), Introduction to diffusion in semiconductors, IEEE Monograph series 16, P. Perigrinous Ltd..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Patillon, J.N. (1993). Light Detectors. In: Martinez, G. (eds) Optical Properties of Semiconductors. NATO ASI Series, vol 228. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8075-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8075-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4224-8

  • Online ISBN: 978-94-015-8075-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics