Skip to main content

Ultrafast Dynamics and Non Linear Optical Properties of Semiconductor Quantum Wells and Superlattices

  • Chapter
Optical Properties of Semiconductors

Part of the book series: NATO ASI Series ((NSSE,volume 228))

Abstract

Ultrafast and non linear properties of semiconductors are reviewed. A special emphasis is given to the case of quantum wells and superlattices, both for the ultrafast optical properties and for the optical non-linearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank, “Compression of optical pulses to six femtosecons by using cubic phase compensation”, Opt. Lett., 12, 483–485 (1986)

    ADS  Google Scholar 

  2. W. Knox, “Quantum wells for femtosecond optoelectronic applications”, Appl. Phys., A53, 503–513 (1991)

    ADS  Google Scholar 

  3. Ultra-short laser pulses and applications, Ed. W Kaiser, Topic in applied physics, Vol. 60, Springer, Berlin (1988)

    Google Scholar 

  4. Ultrashort light pulses: picosecond techniques and applications, Ed. S.L. Shapiro, Topics in applied Physics, Vol. 18, Springer, Berlin (1984)

    Google Scholar 

  5. Optical non-linearities and instabilities in Semiconductors, Ed. Hartmut Haug, Academic Press, New York, (1988)

    Google Scholar 

  6. J. Shah, “Hot carriers in quasi-2D polar semiconductors”, IEEE J. Quantum Electron., QE-22, 1728–1743 (1986) and

    ADS  Google Scholar 

  7. J. Shah, “Ultrafast studies of carrier relaxation in semiconductors and their microstructures”, Superlatt, and Microstruct., 6, 293–302 (1989)

    ADS  Google Scholar 

  8. Y.R. Shen, The principles of non linear optics, J. Wiley, New York (1984)

    Google Scholar 

  9. E. O. Göbel, “Ultrafast spectroscopy in semiconductors”, Festkörperprobleme, Advances in Solid state Physics, Vol. 30, 269 (1990) Ed. U. Rössler, Viewveg

    Google Scholar 

  10. Optical switching in low dimensional systems, Ed. H. Haug, L. Banyai, Plenum NATO ASI Series Vol. 194, New York and London (1988)

    Google Scholar 

  11. R.R. Afano, Semiconductors Probed by Ultrafast laser Spectroscopy, Academic Press, New York (1984)

    Google Scholar 

  12. C. Klingshirn, H. Haug, “Optical properties of highly excited direct gap semiconductors”, Phys. Rep., 70, 315–410 (1981)

    ADS  Google Scholar 

  13. R.W. Schoenlein, W.Z. Lin, E.P. Ippen, J.G. Fujimoto, “Femtosecond hot carrier energy relaxation in GaAs”, Appl. Phys. Lett., 51, 1442–1445 (1987)

    ADS  Google Scholar 

  14. P.B. Becker, H.L. Fragnito, C.H. Brito Cruz, J. Shah, R.L. Fork, J.E. Cunningham, J.E. Henry, C.V. Shank, “Femtosecond intervalley scattering in GaAs”, Appl. Phys. Lett., 53, 2089–2090 (1988)

    ADS  Google Scholar 

  15. J.Y. Bigot, M.T Portella, R.W. schoenlein, J.E. Cunningham, C.V. Shank, “Resonant intervalley scattering in GaAs”, Phys. Rev. Lett., 65, 3429–3432 (1990)

    ADS  Google Scholar 

  16. J. Shah, B. Deveaud, T.C. Damen, W.T. Tsang, A.C. Gossard, P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy”, Phys. Rev. Lett., 59, 2222–2225 (1987)

    ADS  Google Scholar 

  17. S. Zollner, S. Gopalan, M. Cardona, “Microscopic theory of intervalley scattering in GaAs: k dependence of deformation potentials and scattering rates”, J. Appl. Phys., 65, 1682–1693 (1990)

    ADS  Google Scholar 

  18. E. Finkmann, M.D. Sturge, M.C. Tamargo, “X-point excitons in AlAs/GaAs superlattices”, Appl. Phys. Lett., 49, 1299–1301 (1986)

    ADS  Google Scholar 

  19. G. Danan, B. Etienne, F. Mollot, R. Planel, A.M. Jean-Louis, F. Alexandre, B. Jusserand, G. Le Roux, J.Y. Marzin, H. Savary, B. Sermage, “Optical evidence of the direct-to -indirect-gap transition in GaAs/AlAs short-period superlattices”, Phys. Rev., B35, 6207–6212 (1987)

    ADS  Google Scholar 

  20. J. Feldmann, J. Nunnenkamp, G. Peter, E. Göbel, J. Kuhl, K. Ploog, P. Dawson, C.T. Foxon, “Experimental study of the IΓ-X transfer in type-II (Al,Ga)As/AIAs superlattices and multiple quantum well structures”, Phys. Rev., B42, 5809–5821 (1990)

    ADS  Google Scholar 

  21. Y. Masumoto, T. Mishina, F. Saaki, M. Adachi, “Interlayer IΓ-X Scattering in staggered alignment A10.34Ga0.66As-AIAs ternary alloy multiple quantum well structures”, Phys. Rev., B40, 8581–8584 (1989)

    ADS  Google Scholar 

  22. For a review, see for example S.E. Esipov, Y.B. Levinson, “The temperature and energy distribution of photoexcited hot electrons”, Advances in Physics, 36, 331–383 (1987);

    ADS  Google Scholar 

  23. S.A. Lyon, “Spectroscopy of hot carriers in Semiconductors”, J. Lumin., 35,121–153 (1986);

    Google Scholar 

  24. J. Ryan, “Time resolved spectroscopy of semiconductor quantum well heterostructure”, Physica, 127B, 343–348 (1984) and references therein.

    Google Scholar 

  25. R. Ulbrich, “Energy relaxation of photoexcited hot electrons in GaAs”, Phys. Rev., B8, 5719–5727 (1973)

    ADS  Google Scholar 

  26. W.W. Rühle, K. Leo, E. Bauser, “Cooling of a hot electron-hole plasma in AlxAx 1-xAs”, Phys. Rev., B140, 1757–1761 (1989);

    Google Scholar 

  27. K. Leo, W.W Rühle, H.J. Queiser, K. Ploog, Phys. Rev., B37, 7121 (1988);

    ADS  Google Scholar 

  28. K. Leo, W.W. Rühle, HJ. Queiser, K. Ploog, Appl. Phys., A45, 35 (1988)

    ADS  Google Scholar 

  29. J.A. Kash, J.C. Tsang, J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs”, Phys. Rev. Lett., 54, 2151–2154 (1985)

    ADS  Google Scholar 

  30. P. Korcevar, “Hot phonon dynamics”, Physica, 134 B+C, 155–163 (1985)

    MathSciNet  Google Scholar 

  31. W.W. Rühle, H.J. Polland, “Heating of cold electrons by a warm GaAs lattice: A novel probe of the carrier-phonon interaction”, Phys. Rev., B36, 1683–1685 (1987)

    ADS  Google Scholar 

  32. B.P. Zakharchenya, D.N. Mirlin, V.I. Perel’, I.I. Reshina, “Spectrum and polarization of hot electron photoluminescence in semiconductors”, Sov. Phys. Usp., 25, 143–166 (1982)

    ADS  Google Scholar 

  33. R.G. Ulbrich, J.A. Kash, J.C. Tang, “Hot-electron recombination at neutral acceptors in GaAs: A cw probe of femtosecond intervalley scattering”, Phys. Rev. Lett., 62, 949–952 (1989)

    ADS  Google Scholar 

  34. G. Fasol, W. Hackenberg, H.P. Hughes, K. Ploog, E. Bauser, H. Kano, “Continuous wave spectroscopy of femtosecond carrier scattering in GaAs”, Phys. Rev., B41, 1461–1478 (1990)

    ADS  Google Scholar 

  35. C.L. Petersen, S.A. Lyon, “Observation of hot-electron energy loss through the emission of phononplasmon coupled modes in GaAs”, Phys. Rev. Lett., 65, 760–763 (1990)

    ADS  Google Scholar 

  36. J.L. Oudar, D. Hulin, A. Migus, A. Antonetti, F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs”, Phys. Rev. Lett., 55, 2074–2077 (1986)

    ADS  Google Scholar 

  37. P.C. Becker, H.L. Fragnito, C.H. Brito Cruz, R.L. Fork, J.E. Cunningham, J.E. Henry, C.V. Shank, “Femtosecond photon echoes from band to band transitions in GaAs”, Phys. Rev. Lett., 61, 1647–1650 (1988)

    ADS  Google Scholar 

  38. see also J.A. Kash, “Carrier-carrier scattering in GaAs: quantitative measurements from hot (e,Ao) luminescence”, Phys. Rev., B40, 3455–3458 (1989)

    Google Scholar 

  39. T. Elsaesser, J. Shah, L. Rota, P. Lugli, “Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy”, Phys. Rev. Lett., 66, 1757–1760 (1990)

    ADS  Google Scholar 

  40. J.P. Foing, D. Hulin, M. Joffre, M.K. Jackson, J.L. Oudar, C. Tanguy, M. Combescot, “Absorption edge singularities in highly excited semiconductors”, Phys. Rev. Lett., 68, 110–113 (1992)

    ADS  Google Scholar 

  41. C. Weisbuch, Fundamental properties of III-V semiconductor two-dimensional quantized structures: the basis for optical and electronic device applications, in Semiconductors and Semimetals, Vol. 24, Applications of multiquantum wells, selective doping and superlattices, Vol. Ed. R. Dingle, Eds. R.K. Willardson, A.C. Beer, Academic Press, New York (1987) p. 1–133

    Google Scholar 

  42. C. Weisbuch, B. Vinter, Quantum Semiconductor structures: fundamentals and applications, Academic press, New York (1990)

    Google Scholar 

  43. G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les Editions de Physique, Les Ulis, France, (1988)

    Google Scholar 

  44. H. Shichijo, R.M. Kolbas, N. Holonyak, Jr, “Carrier collection in a semiconductor quantum well”, Solid State Commun., 27, 1029–1032 (1978)

    ADS  Google Scholar 

  45. N. Holonyak, Jr, R.M. Kolbas, R.D. Dupuis, P.D. Dapkus, “Quantum well heterostructure lasers”, IEEE J. Quantum Electron., QE-16, 170–186 (1980)

    Google Scholar 

  46. J.Y. Tang, K. Hess, N. Holonyak, Jr, J.J. Colemann, P.D. Dapkus, “The dynamics of electron collection in quantum well heterostructures”, J. Appl. Phys., 53, 6043 (1982)

    ADS  Google Scholar 

  47. S.V. Kozyrev, A.Ya Shik, “Capture of carriers by quantum wells in heterostructures”, Sov. Phys. Semicond., 19, 1024 (1985)

    Google Scholar 

  48. J.A. Brum, G. Bastard, “Resonant carrier capture by semiconductor quantum wells”, Phys. Rev., B33, 1420 (1985)

    ADS  Google Scholar 

  49. M. Babiker, B.K. Ridley, “Effective mass eigenfunctions in superlattices and thier role in well capture”, Superlatt. and Microstruct., 2, 287 (1986)

    ADS  Google Scholar 

  50. B. Deveaud, A. Chomette, D. Morris, A. Regreny, “carrier capture by quantum wells” to be published

    Google Scholar 

  51. B.F. Levine, K.K Choi, C.G. Bethea, J. Walker, R.J. Malik, “New 10 µm infrared detector using intersubband absorption in resonant tunneling superlattices”, Appl. Phys. Lett., 50, 1092–1094 (1988)

    ADS  Google Scholar 

  52. W.T. Tsang, “Symmetric separate confinement heterostructure laser with low threshold and narrow beam divergence by molecular beam epitaxy”, Electron Lett., 16, 939 (1980)

    Google Scholar 

  53. B. Deveaud, F. Clérot, A. Regreny, K. Fujiwara, K. Mitsunaga, J. Otha, “Capture of photoexcited carriers by a laser structure”, Appl. Phys. Lett., 55, 2646–1648 (1989)

    ADS  Google Scholar 

  54. S. Morin, B. Deveaud, F. Clérot, K. Fujiwara, K. Mitsunaga, J. Otha, “Capture of photoexcited carriers in a single quantum well with different confinement structures”, IEEE J. Quantum Electron., QE-27, 1669–1675 (1991)

    ADS  Google Scholar 

  55. J. Shah, B. Deveaud, T.C. Damen, W.T. Tsang, A.C. Gossard, P. Lugli, “Determination of intervalley scattering rate in GaAs by subpicosecond luminescence spectroscopy”, Phys. Rev. Lett., 59, 2222–2225 (1987)

    ADS  Google Scholar 

  56. J. Shah, A. Pinczuk, A.C. Gossard, W. Wiegmann, “Energy loss rates for hot electrons and holes in GaAs quantum wells”, Phys. Rev. Lett., 54, 2045–2048 (1985)

    ADS  Google Scholar 

  57. D.Y. Oberli, D.R. Wake, M.V. Klein, J. Klem, T. Henderson, H. Morkoç, “Time-resolved Raman scattering in GaAs quantum wells”, Phys. Rev. Lett., 59, 696–699 (1987)

    ADS  Google Scholar 

  58. N. Tatham, J.F. Ryan, C.T. Foxon, “Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells”, Phys. Rev. Lett., 63,1637–1640 (1989)

    ADS  Google Scholar 

  59. R. Fereira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single and multiple quantum well structures”, Phys. Rev., B40, 1074–1086 (1989)

    ADS  Google Scholar 

  60. W. Knox, D.S. Chemla, G. Livescu, J.E. Cunningham, J.E. Henry, “Femtosecond carrier thermalization in dense Fermi seas”, Phys. Rev. Lett., 61, 1290–1293 (1988)

    ADS  Google Scholar 

  61. D.J. Erskine, A.J. Taylor, C.L. Tang, “Femtosecond studies of intraband relaxation in GaAs, AlGaAs, and GaAs/AlGaAs multiple quantum well structures”, Appl. Phys. Lett., 45, 54–56 (1984)

    ADS  Google Scholar 

  62. W.H. Knox, C. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, C.V. Shank, “Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells”, Phys. Rev. Lett., 56, 1191–1193 (1986)

    ADS  Google Scholar 

  63. D.A.B. Miller, D.S. Chemla, P.W.Smith, A.C. Gossard, W.T. Tsang, “Room temperature saturation characteristics in GaAs/AlGaAs multiple quantum well structures and of bulk GaAs”, Appl. Phys., B28, 96–97 (1982)

    ADS  Google Scholar 

  64. J.E. Zucker, A. Pinczuk, D.S. Chemla, A.C. Gossard, W. Wiegmann, “Delocalized exciton in semiconductor heterostructures”, Phys. Rev., B29, 7065–7068 (1984)

    ADS  Google Scholar 

  65. D.S. Chemla, D.A.B. Miller, “Room temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures”, J. Opt. Soc. Am., B2, 1155–1173 (1985)

    ADS  Google Scholar 

  66. C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard, “Intrinsic radiative recombination from quantum states in GaAs-AlGaAs multi-quantum well structures”, Solid State Commun., 37, 219–222 (1981)

    ADS  Google Scholar 

  67. E.O. Göbel, H. Jung, J. Kuhl, K. Ploog, “Recombination enhancement due to carrier localization in quantum wells”, Phys. Rev. Lett., 51, 1588–1561 (1983)

    ADS  Google Scholar 

  68. R.C. Miller, D.A. Kleinmann, “Excitons in GaAs quantum wells”, J. lumin., 30, 520–540 (1985)

    Google Scholar 

  69. J. Aaviksoo, “Time resolved studies of excitonic polaritons”, J. Lumin., 48 &49, 57–66 (1991)

    Google Scholar 

  70. C. Weisbuch, R.G. Ulbrich, “Resonant light scattering mediated by excitonic polaritons in semiconductors”, Phys. Rev. Lett., 39, 654 (1977)

    ADS  Google Scholar 

  71. V.M. Agranovitch, O.A. Dubovskii, “Effect of retarded interaction on the exciton spectrum in onedimensional and two dimensional crystals”, JETP Lett., 3, 223–226 (1966)

    Google Scholar 

  72. M. Orrit, C. Aslangul, P. Kottis, “Quantum mechanical model calculations of radiative properties of a molecular crystal. I. polaritons and abnormal decay of excitons in one and two-dimensional systems”, Phys. Rev., B25, 7263–7280 (1982)

    ADS  Google Scholar 

  73. E. Hanamura, “Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well”, Phys. Rev., B38, 1228–1234 (1988)

    ADS  Google Scholar 

  74. L.C. Andreani, “Radiative lifetime of free excitons in quantum wells”, Solid State Commun., 77, 641–645 (1990)

    ADS  Google Scholar 

  75. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C.T. Foxon, R.J. Elliott, “Linewidth dependence of radiative exciton lifetimes in quantum wells”, Phys. Rev. Lett., 59, 2337–2340 (1987)

    ADS  Google Scholar 

  76. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, C.W. Tu, “Optical dephasing of homogeneously broadened two dimensional exciton transitions in GaAs quantum wells”, Phys. Rev., B34, 9027–9030 (1986)

    ADS  Google Scholar 

  77. A. Honold, L. Schultheis, J. Kuhl, C.W. Tu, “Collision broadening of two dimensional excitons in a GaAs single quantum well”, Phys. Rev., 40, 6442–6445 (1989)

    ADS  Google Scholar 

  78. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, D.S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells”, Phys. Rev. Lett., 56, 2710–2713 (1991)

    Google Scholar 

  79. J.I. Kusano, Y. Segawa, Y. Aoyagi, S. Namba, H. Okamoto, “Extremely slow energy relaxation of a two dimensional exciton in a GaAs superlattice structure”, Phys. Rev., B40, 1685–1691 (1989)

    ADS  Google Scholar 

  80. T.C. Damen, J. Shah, D.Y. Oberli, D.S. Chemla, J.E. Cunningham, J.M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells”, Phys. Rev., B42, 7434–7337 (1990)

    ADS  Google Scholar 

  81. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, C.A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optic effect device”, Appl. Phys. Lett., 45, 13–15 (1984)

    ADS  Google Scholar 

  82. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, C.A. Burrus, “Band edge electroabsorption in quantum well structures: the quantum confined Stark effect”, Phys. Rev. Lett., 53, 2173–2176 (1984)

    ADS  Google Scholar 

  83. L. Schultheis, A. Honold, J. Kuhl, C.W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/AlGaAs quantum wells”, Festkörperprobleme, 29, 157–181 (1989)

    Google Scholar 

  84. J. Hegarty, M.D. Sturge, “Studies of exciton localization in quantum-well structures by nonlinearoptical techniques”, J. Opt. Soc. Am., B2, 1134–1154 (1985)

    ADS  Google Scholar 

  85. E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler, “Quantum beats of excitons in quantum wells”, Phys. Rev. Lett., 64, 1801–1804 (1990) and

    ADS  Google Scholar 

  86. M.D. Webb, S.T. Cundiff, D.G. Steel, “Observation of time-resolved picosecond stimalated photon-echoes and free polarization decay in GaAS/AlGaAs multiple quantum wells”, Phys. Rev. Lett., 66, 934–937 (1991)

    ADS  Google Scholar 

  87. R. Strobel, R. Eccleston, J. Kuhl, K. Köhler, “Measurement of the exciton formation time and the electron and hole tunneling times in a double quantum well structure”, Phys. Rev., B43, 12564–12570 (1991)

    ADS  Google Scholar 

  88. W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, “Femtosecond dynamics of resonantly excited excitons in room temperature GaAs quantum wells”, Phys. Rev. Lett., 54, 1306–1309 (1985)

    ADS  Google Scholar 

  89. D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink, “Nonlinear optical properties of semiconductor quantum wells”, in Optical nonlinearities and instabilities in semiconductors, see ref.4, p.83–120

    Google Scholar 

  90. P. Blood, Proc. SPIE, Quantum Wells and Superlattices in Optoelectron. Devices and integrat. Opt., Vol. 861, 34 (1987)

    Google Scholar 

  91. P.T. Landsberg, M.S. Abrahams, M. Osinski, “Evidence of no k-selection rule in gain spectra of quantum well AlGaAs laser diodes”, IEEE J. Quantum Electronics, QE-21, 24–28 (1985)

    ADS  Google Scholar 

  92. B. Sermage, “surface recombination in GaAs quantum wells”, E-MRS Meeting, Vol. XVI, 391 (1987)

    Google Scholar 

  93. T. Matsutsue, H. Sakaki, “Radiative recombination coefficient of free carriers in GaAs-AlGaAs quantum wells and its dependence on temperature”, Appl. Phys. Lett., 50, 1429–1431 (1987)

    ADS  Google Scholar 

  94. D.A. Kleinman, R.C. Miller, “Band-gap renormalization in semiconductor quantum wells containing carriers”, Phys. Rev. >B32, 2266–3272 (1988)

    ADS  Google Scholar 

  95. E. Lach, A. Forchel, D.A. Broido, T.L. Reinecke, G. Weimann, W. Schlapp, “Room temperature emission of highly excited GaAs/GaAIAs quantum wells”, Phys. Rev., B42, 5395–5398 (1990)

    ADS  Google Scholar 

  96. G. Tränkle, H. Leier, A. Forchel, H. Haug, C. Ell, G. Weimann, “Dimensionality dependence of the band-gap renormalization in two and three dimensional electron-hole plasmas in GaAs”, Phys. Rev. Lett., 58, 419–422 (1987)

    ADS  Google Scholar 

  97. G. Bongiovanni, J.L. Staehli, D. Martin, “Many-body effects in the electron-hole plasma confined in GaAs-(GaAI)As quantum wells”, Phys. Stat. Sol. >B 150, 685–690 (1988)

    ADS  Google Scholar 

  98. C. Klingshirn, Ch. Weber, D.S. Chemla, D.A.B. Miller, J.E. Cunningham, “The electron-hole plasma in quasi two dimensional and three dimensional semiconductors”, in Optical switching in lowdimensional systems, NATO series Vol. 194, 353–360 (1990)

    Google Scholar 

  99. S. Schmitt-Rink, C. Ell, H. Haug, “Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum well structures”, Phys. Rev., B33, 1183–1189 (1986)

    ADS  Google Scholar 

  100. R. Cingolani, K. Ploog, A. Cingolani, C. Moro, M. Ferrara, “Radiative recombination processes of the many-body states in multiple quantum wells”, Phys. Rev. B42, 2893–2903 (1990)

    ADS  Google Scholar 

  101. B. Deveaud, F. Clérot, K. Fujiwara, K. Mitsunaga, “Radiative properties of a highly excited quantum well” Appl. Phys. Lett., 58, 1485–1487 (1991)

    ADS  Google Scholar 

  102. The estimated gain for a single quantum well in a guiding structure such as the one we are using is of the order of 50 cm-1. This gives only negligible stimulated emission over our spot size.

    Google Scholar 

  103. A. Selloni, S. Modesti, M. Capizzi, “Luminescence line-shape analysis of the electron-hole plasma in direct gap GaAlAs: Random-Phase-Approximation approach”, Phys. Rev., B30, 821–831 (1984)

    ADS  Google Scholar 

  104. G. Lasher, F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors”, Phys. Rev., 133, A553-A563 (1964)

    ADS  Google Scholar 

  105. H.C. Casey, M.B. Panish, in Heterostructure Lasers, Academic Press, NY, (1978)

    Google Scholar 

  106. P.T. Landsberg, D.J. Robbins, “Lifetime broadening of a parabolic band edge of a pure semiconductor at various temperatures”, Solid State Electron., 28, 137–141 (1985)

    ADS  Google Scholar 

  107. A.I. Kucharska, D.J. Robbins, “Lifetime broadening in GaAs-A1GaAs quantum well lasers”, IEEE J. Quantum Electron., QE-26, 443–448 (1990)

    ADS  Google Scholar 

  108. M. Asada, “Intraband relaxation time in quantum well lasers”, IEEE J. Quantum Electron., QE-25, 2019–2026 (1989)

    ADS  Google Scholar 

  109. In such a case, a small BGR is observed when the density increases from 5×1011 cm-2 up to 5× 1012 cm-2

    Google Scholar 

  110. The reason lies in the large broadening of the low energy tail which blurs the differences in the unbroadened spectra.

    Google Scholar 

  111. It is interesting to note that, at the highest densities, the broadening factor is as large as 30 meV, i.e. larger than the Fermi filling of the valence band. The k-selection rule nevertheless holds in that case: the recombination cannot be described by a bimolecular recombination regime.

    Google Scholar 

  112. T.C.L.G. Sollner, W.D. Goodhue, P.E. Tannenwald, C.D. Parker, D.D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz”, Appl. Phys. Lett., 43, 588–590 (1983)

    ADS  Google Scholar 

  113. J.F. Whitaker, G.A. Murou J.F. Whitaker, T.C.L.G Sollner, W.D. Goodhue, “Picosecond switching time measurement of a resonant tunneling diode”, Appl. Phys. Lett., 53, 385–387 (1988)

    ADS  Google Scholar 

  114. D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett., 26, 101–103 (1975)

    ADS  Google Scholar 

  115. S Muto, A. Takeuchi, T. Inata, E. Miyachi, T. Fuji, “Picosecond characterization of InGaAs/InAlAs resonant tunneling barriers grown by MBE”, Surf. Sci., 228, 370–372 (1990)

    ADS  Google Scholar 

  116. M. Tsuchyia, T. Matsutsue, H. Sakaki, “Tunneling escape rate of electrons from quantum well in double barrier heterostructures”, Phys. Rev. Lett., 59, 2356–2359 (1987)

    ADS  Google Scholar 

  117. B. Deveaud, A. Chomette, A. Regreny, J.L. Oudar, D. Hulin, A. Antonetti, “An ultrafast optical modulator: the double well GaAs/A1GaAs superlattice (DWSL)”, in High Speed Electronics, Ed. B. Källback and H. Beneking, Springer Verlag, Berlin, 1986, p.101.

    Google Scholar 

  118. S. Ikeda, A. Shimizu, Y. Sekiguchi, M. Hasegawa, K. Kanedo, T. Hara, “Wide-range wavelength tuning of an asymmetric dual quantum well laser with inhomogeneous currentinjection”, Appl. Phys. Lett., 55, 2057–2059 (1989).

    ADS  Google Scholar 

  119. T. Weil, B. Vinter, “Calculation of phonon assisted tunneling between two quantum wells”, J. Appl. Phys., 60, 3227–3231 (1986)

    ADS  Google Scholar 

  120. By exact resonance, we mean the case where those two levels are exactly at the same energy when the two wells are isolated from one another.

    Google Scholar 

  121. M.G.W. Alexander, M. Nido, W.W. Rühle, K. Ploog, K. Köhler, “Quantum mechanical and real tunneling transfer times between GaAs/AlGaAs quantum wells”, Phys. Rev., B41, 2251–2255 (1989)

    Google Scholar 

  122. D.Y. Oberli, J. Shah, T.C. Damen, T.Y. Chang, C.W. Tu, D.A.B. Miller, J.E. Henry, R.F. Kopf, N. Sauer, A.E. Di Giovanni, “Direct measurement of resonant and nonresonant tunneling times in asymetric coupled quantum wells”, Phys. Rev., B40, 3028–3031 (1989)

    ADS  Google Scholar 

  123. T.B. Norris, N. Vodjani, B. Vinter, C. Weisbuch, G.A. Mourou, “Charge transfer state photoluminescence in asymmetric coupled quantum wells”, Phys. Rev., B40, 1342–1345 (1989).

    ADS  Google Scholar 

  124. B. Deveaud, F. Clérot, A. Chomette, A. Regreny, R. Fereira, G. Bastard, “Subpicosecond luminescence study of tunneling and relaxation in coupled quantum wells”, Phys. Rev., B42, 7021–7032 (1990)

    ADS  Google Scholar 

  125. K. Leo, J. Shah, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, W. Schäfer, K. Köhler, “Coherent oscillations of a wave packet in a semiconductor double quantum well structure”, Phys. Rev. Lett., 66, 201–204 (1991)

    ADS  Google Scholar 

  126. L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors”, IBM Res. Dev.. >14, 61–68 (1970)

    Google Scholar 

  127. A. Chomette, B. Deveaud, J.Y. Emery, A. Regreny, B. Lambert, “Vertical transport in GaAs/AlGaAs superlattices observed by photoluminescence”, Solid State Commun., 54, 75–78 (1985)

    ADS  Google Scholar 

  128. A. Chomette, B. Deveaud, A. Regreny, G. Bastard, “Observation of carrier localization in intentionnaly disordered GaAs/AlGaAs superlattices”, Phys. Rev. Lett., 57, 1464–1467 (1986)

    ADS  Google Scholar 

  129. B. Lambert, F. Clérot, B. Deveaud, A. Chomette, G. Talalaeff, A. Regreny, “electron and hole transport properties in GaAs-AlGaAs superlattices”, J. Lumin., 44, 277–283 (1989)

    Google Scholar 

  130. F. Capasso, K. Mohamed, A.Y. Cho, R. Hull, A.L. Hutchinson, “New quantum photoconductivity and large photocurrent gain by effective mass filtering in a forward biased superlattice p-n junction”, Phys. Rev. Lett., 55,1152–1155 (1985)

    ADS  Google Scholar 

  131. B. Deveaud, B. Lambert, A. Chomette, A. Regreny, J. Shah, T.C. Damen, “Picosecond and subpicosecond luminescence of GaAs/GaA1As superlattices”, in Optical switching in low dimensional systems, Eds. H. Haug, L. Banyai, Plenum Press, ASI series Vol. 194, New York (1989) p. 341–352

    Google Scholar 

  132. B. Lambert, A. Chomette, B. Deveaud, A. Regreny, High mobility vertical transport in graded-gap GaAs/AlGaAs superlattices, Semicond. Sci. Technol., 2, 705–709 (1987)

    ADS  Google Scholar 

  133. B. Deveaud, T.C. Damen, J. Shah, B. Lambert, A. Regreny, “Bloch transport of electrons and holes in superlattice minibands: direct measurement by luminescence spectroscopy”, Phys. Rev. Lett., 58, 2582–2585 (1987)

    ADS  Google Scholar 

  134. B. Deveaud, J. Shah, T.C. Damen, B. Lambert, A. Chomette, A. Regreny, “Optical studies of perpendicular transport in semiconductor superlattices”, IEEE J. Quantum Electron., QE-24, 1641–1651 (1988)

    ADS  Google Scholar 

  135. B. Deveaud, F. Clérot, A. Chomette, B. Lambert, P. Auvray, M. Gauneau, A. Regreny, “Direct probing of electron movement in superlattices by subpicosecond luminescence”, Appl. Phys. Lett., 59, 2168–2170 (1991)

    ADS  Google Scholar 

  136. See for example, F. Capasso in Physics and applications of Quantum Wells and Superlattices, Ed. E.E. Mendez, K. von Klitzing, Plenum, NATO ASI Ser. Vol. 170, 1987, p. 377

    Google Scholar 

  137. D.S. Chemla, “Two-dimensional semiconductors: recent develoments”, J. Lumin., 30, 502–519 (1985)

    Google Scholar 

  138. D.S. Chemla, “Quantum wells for photonics”, Physics Today, 1–8 (1985)

    Google Scholar 

  139. S. Schmitt Rink, D.A.B. Miller, D.S. Chemla, “Linear and nonlinear optical properties of semiconductor quantum wells”, Advances in Physics, 38, 889–188 (1989)

    Google Scholar 

  140. R. Zimmermann, “Many-Particle theory of highly excited semiconductors”, Teubner Texte zur physik, band 18, Leipzig (1988)

    Google Scholar 

  141. See for example Schmitt-Rink, C. Ell, “Excitons and electron-hole plasma in quasi-twodimensional systems”, J. Lumin., 585–596 (1985)

    Google Scholar 

  142. R.J. Elliott, Intensity of optical absorption by excitons, Phys. Rev., 106, 1384–1389 (1957)

    ADS  Google Scholar 

  143. E. Burstein, Phys. Rev., 93, 632 (1954)

    ADS  Google Scholar 

  144. H.C. Lee, A. Kost, M. Kawase, A. Hariz, P.D. Dakpus, E.M. Garmire, “Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition”, IEEE J. Quantum Electron., QE-24, 1581–1592 (1988)

    ADS  Google Scholar 

  145. D.A.B Miller, D.S. Chemla, D.J. Eilenberger, P.W. Smith, A.C. Gossard, W. Wiegmann, “Degenerate four wave mixing in room temperature GaAs/A1GaAs multiquantum well structures”, Appl. Phys. Lett., 42, 925–927 (1983)

    ADS  Google Scholar 

  146. W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, Femtosecond dynamics of resonantly excited excitons in room temperature GaAs quantum wells, Phys. Rev. Lett., 54, 1306–1309 (1985)

    ADS  Google Scholar 

  147. N. Peyghambarian, H.M. Gibbs, J.L. Lewell, A. Antonetti, A. Migus, D. Hulin, A. Mysyrowicz, Phys. Rev. Lett., 53, 2433 (1984)

    ADS  Google Scholar 

  148. See for example: S. Schmitt-Rink, in Interfaces, Quantum Wells and Superlattices, Ed. C.R. Leavens and R. Taylor, Plenum Press, NATO ASI series Vol.179, NY and London, 1988, p. 211.

    Google Scholar 

  149. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoç, H.M. Gibbs, N. Peyghambarian, “Well-size dependence of exciton blue shift in GaAs multiple quantum well structures”, Phys. Rev., 33, 4389–4391 (1986)

    ADS  Google Scholar 

  150. R. Zimmermann, U. Rösler, “Theory of electron-hole plasma in CdS”, Phys. Stat. Solidi, B75, 633–645 (1975)

    ADS  Google Scholar 

  151. H. Haug, D.B. Tran-Thoai, “Gain spectrum of an e_h liquid in direct gap semiconductors”, Phys. Stat. Solidi, b98, 581–589 (1980)

    ADS  Google Scholar 

  152. J.C. Maan, M. Potemski, K. Ploog, G. Weimann, “Properties of a dense quasi two-dimensional electron-hole plasma at high magnetic fields”, in Spectroscopy of semiconductors microstructures, Eds. G. Fasol, A. Fasolino, P. Lugli, Plenum, NATO ASI Series Vol. 206, New York (1989)

    Google Scholar 

  153. P. Bergman, B. Deveaud, A. Regreny, to be published.

    Google Scholar 

  154. N. Bloembergen, non-linear optics, W.A. Benjamin, New York (1965)

    Google Scholar 

  155. I.I. Rabi, Phys. Rev., 51, 652 (1937)

    ADS  Google Scholar 

  156. R. Zimmermann, “The dynamical Stark effect of excitons”, “Ultrafast spectroscopy in semiconductors”, Festkörperprobleme, Advances in Solid state Physics, Vol. 30, 269 (1990) Ed. U. Rössler, Viewveg

    Google Scholar 

  157. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, “Dressed excitons in a multiple quantum well structure: evidence for an optical Stark effect with femtosecond response time”, Phys. Rev. Lett., 56, 2433–2436 (1986)

    Google Scholar 

  158. A. Von Lehmen, D.S. Chemla, J. Zucker, J.P. Heritage, Opt. Lett., 11, 609–611 (1986)

    ADS  Google Scholar 

  159. W.H. Knox, D.S. Chemla, D.A.B. Miller, J.B. Stark, S. Schmitt-Rink, “Femtosecond ac Stark effect in semiconductor quatum wells: extreme low- and high-intensity limits”, Phys. Rev. Lett., 62, 1189–1192 (1989)

    ADS  Google Scholar 

  160. M. Joffre, D. Hulin, A. Migus, M. Combescot, Phys. Rev. Lett., 62, 74 (1987)

    ADS  Google Scholar 

  161. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, H.M. Gibbs, N. Peyghambarian, “Ultrafast all-optical gate with subpicosecond ON and OFF response time”, Appl. Phys. Lett., 49, 749–751 (1986)

    ADS  Google Scholar 

  162. See for example: Switching in low dimensional systems, Eds. H. Haug and E.N. Banyay, Plenum Press, NATO ASI series vol. B194, New York (1988)

    Google Scholar 

  163. D.A.B. Miller, J.S. Weiner, D.S. Chemla, “Electric field dsependence of linear optical properties in quantum well structures: waveguide electro-absorption and sum rules”, IEEE J. Quantum Electron., QE-22, 1816–1830 (1986)

    ADS  Google Scholar 

  164. D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink, “Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells”, Phys. Rev. Lett., 59,1018–1021 (1987)

    ADS  Google Scholar 

  165. B.F. Levine, K.K. Choi, C.G. Bethea, J. Walker, R.J. Malik, “New 10 µm infrared detector using intersubband absorption in resonant tunneling GaA1As superlattices”, Appl. Phys. Lett., 50, 1092–1094 (1987)

    ADS  Google Scholar 

  166. E. Rosencher, P. Bois, J. Nagle, E. Costard, S. Delaitre, Observation of nonlinear optical rectification at 10.6 µm in compositionally asymmetrical A1GaAs multiquantum wells, Appl. Phys. Lett., 55, 1597–1599 (1989)

    ADS  Google Scholar 

  167. E. Rosencher, P. Bois, B. Vinter, J. Nagle, D. Kaplan, “Giant nonlinear optical rectification at 8–12 µm in asymmetric coupled quantum wells”, Appl. Phys. Lett., 1822–1824 (1990)

    Google Scholar 

  168. A.M. Glass, J. Strait, in “Photorefractive materials and applications”, Eds. P. Günter, J.P. Huignard, Springer, New York (1988) p.260

    Google Scholar 

  169. A.M. Glass, D.D. Nolte, D.H. Olson, G.E. Doran, D.S. Chemla, W.H. Knox, “Resonant photorefractive four wave mixing in semi-insulating GaAs/AlGaAs quantum wells”, Opt. Lett., 15, 264–266 (1990)

    ADS  Google Scholar 

  170. D.D. Nolte, D.H. Olson, G.E. Doran, W.H. Knox, A.M. Glass, “Resonant photorefractive effect in semiinsulating multiple quantum wells”, J. Opt. Soc. Am. B, 7, 2217–2225 (1990)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deveaud, B. (1993). Ultrafast Dynamics and Non Linear Optical Properties of Semiconductor Quantum Wells and Superlattices. In: Martinez, G. (eds) Optical Properties of Semiconductors. NATO ASI Series, vol 228. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8075-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8075-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4224-8

  • Online ISBN: 978-94-015-8075-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics