Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 8))

  • 507 Accesses

Abstract

The energy dissipators for dam outlet works may be classified into four groups as shown in Fig.6.1 (Mason, 1982):

  • rock basins,

  • simple hydraulic jump basins,

  • baffle basins, and

  • free trajectory jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Part 2. Chapters 6 to 14

  • Adbel-Gawad, S.M. & McCorquodale, J.A. (1985): Analysis of the Submerged Radial Hydraulic Jump. Canadian J. Civil Engineering 12(3): 593–602.

    Article  Google Scholar 

  • Abdul Khader, M.C. & Rao, H.S. (1971): Cavitation in Stilling Basin Appurtenances. XIV IAHR Congress Paris, 5: 73–76.

    Google Scholar 

  • Abecasis, F.M. & Quintela, A.C. (1964): Hysteresis in Steady Free-Surface Flow. Water Power 16(Apr): 147–151.

    Google Scholar 

  • Abou-Seida, M.M. (1963): Wave Action Below Spillways. Proc. ASCE, J. Hydraulics Division 89(HY3): 133–152.

    Google Scholar 

  • Adami, A. (1984): Effetto della scrabrezza del fondo sull’altezza coniugata del risalto. Atti de Seminario Idraulica del Territorio Montano, Bressanone. Studi e Ricerche 367, Istituto di Idraulica, Università Padova, Italia.

    Google Scholar 

  • Akbari, M.E., Mittal, M.K. & Pande, P.K. (1982): Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jumps. Hydraulic Modelling of Civil Engineering Structures Coventry, England; Int. Conf. held Sep. 22–24, C1: 87–96.

    Google Scholar 

  • Akiyoshi, Y. Tanaka, K. & Shikasho, S. (1986): Hydraulic Jump in Water Cushion. Trans. JSIDRE 125(10): 45–52.

    Google Scholar 

  • Ali, K.H.M. & Lim, S.Y. (1986): Local Scour Caused by Submerged Wall Jets. Proc. Institution Civil Engineers 81: 607–645;

    Article  Google Scholar 

  • Ali, K.H.M. & Lim, S.Y. (1986): Local Scour Caused by Submerged Wall Jets. Proc. Institution Civil Engineers 83: 875–886.

    Article  Google Scholar 

  • Anastasi, G. (1981): Ancrage du radier d’un bassin amortisseur renfrocé -Essais sur modèle hydroélastique. XIX IAHR Congress New Delhi D(b-10): 251–258.

    Google Scholar 

  • Anderson, A.G., Bowers, C.E. & Dahlin, W.Q. (1968): Discussion to Mangla, Part II by G.M. Binnie, et al., Proc. Institution Civil Engineers 41: 166–170.

    Google Scholar 

  • Andersson, H.I. (1985): Spillage over an Inclined Embankment. J. Hydraulic Engineering ASCE, 111(10): 1299–1307.

    Article  Google Scholar 

  • Arandjelovic, D. (1984): Hydrodynamic Loading of Sill. Hydrosoft ‘84 Portoroz (Yugoslavia), Elsevier, Amsterdam. 1: 117–127.

    Google Scholar 

  • Arbhabhirama, A. & Abella, A.U. (1971): Hydraulic Jump within Gradually Expanding Channel. Proc. ASCE, J. Hydraulics Division 97(HYl): 31–42. Discussions 1971, 97(HY9): 1567–1570; 1971, 97(HY10): 1788–1790; 1972, 98(HY9): 1717–1719.

    Google Scholar 

  • Arbhabhirama, A. & Wan, W.-C. (1975): Characteristics of a Circular Jump in a Radial Wall Jet. J. Hydraulic Research 13(3): 239–257.

    Article  Google Scholar 

  • Austria, P.M. (1987): Catastrophe Model for the Forced Hydraulic Jump. J. Hydraulic Research 25(3): 269–280.

    Article  Google Scholar 

  • Baig, M.Y.A., Vali, S.K., Rao, S.S. & Chetty, A.V.N. (1984): Forced Hydraulic Jump in Rectangular Channels of Small Slopes by Sills of Finite Lengths. Indian J. of Power and River Valley Development 34(Feb): 55–57.

    Google Scholar 

  • Bakhmeteff, B.A. (1932): Hydraulics of Open Channels. McGraw-Hill Book Company, Inc.: New York and London.

    Google Scholar 

  • Basco, D.R. (1971): Optimized Geometry for Baffle Blocks in Hydraulic Jumps. XIV IAHR-Congress Paris, 2(B18): 1–8.

    Google Scholar 

  • Basco, D.R. & Adams, J.R. (1971): Drag Forces on Baffle Blocks in Hydraulic Jumps. Proc. ASCE, J. Hydraulics Division 97(HY12): 2023–2035. Discussion 1972, 98(HY10): 1884; No Closure.

    Google Scholar 

  • Basgen, D.H. (1955): Bonneville Dam Spillway Erosion Repaired. Engineering News Record 154(Apr 21): 36–40.

    Google Scholar 

  • Beichley, G.L. & Peterka, A.J. (1959): The Hydraulic Design of Slotted Spillway Buckets. Proc. ASCE, J. Hydraulics Division 85(HY10) Paper No.2200: 1–36.

    Google Scholar 

  • Beltaos, S. & Rajaratnam, N. (1974): Impinging Circular Turbulent Jets. Proc. ASCE, J. Hydraulics Division 100(HY10): 1313–1328.

    Google Scholar 

  • Bergeles, G. & Athanassiadis, N. (1983): The Flow Past a Surface-Mounted Obstacle. J. Fluids Engineering 105(12): 461–463. Discussions 1984, 106(3): 111–113.

    Article  Google Scholar 

  • Berryhill, R.H. (1957): Stilling Basin Experience of the Corps of Engineers. Proc. ASCE, J. Hydraulics Division 83(HY3), Paper No.1264: 1–36. Discussions 1957, 83(HY6) Paper No.1456: 25–26; 1958, 84(HY5) Paper No.1832: 39–40.

    Google Scholar 

  • Berryhill, R.H. (1963): Experience with Prototype Energy Dissipators. Proc. ASCE, J. Hydraulics Division 89(HY3): 181–201. Discussion 1964, 90(HY1): 293–298; 1964, 90(HY4): 235.

    Google Scholar 

  • Bertschinger, H. (1920): Die Energievernichtung des Uberschusswassers bei Kraftanlagen. Schweizerische Wasserwirtschaft 12(9/10): 71–73.

    Google Scholar 

  • Bhowmik, N.G. (1975): Stilling Basin Design for Low Froude Number. Proc. ASCE, J. Hydraulics Division 101(HY7): 901–915. Discussion 1976, 102(HY6): 796–799; 1970, 102(HY12): 1767–1768.

    Google Scholar 

  • Bianchi, A. (1981): Osservazioni sperimentali sui fenomeni idraulici generati da un salto di fondo in un canale rettangolare. Memorie e Studi 295, Istituto di Idraulica e Costruzioni Idrauliche, Politecnico di Milano: Milano.

    Google Scholar 

  • Binnie, A.M. (1975): Laboratory Experiments on the Flow of Water over a Downward Step in an Open Channel. International J. Mechnical Sciences 17: 583–587.

    Article  Google Scholar 

  • Bischoff, H. & Gieseler, O. (1977): A Method to Determine the Equivalent Sand Roughness by Means of the Circular Hydraulic Jump. XVII IAHR Congress Baden-Baden, 6(S3.8): 613–616.

    Google Scholar 

  • Blaisdell, F.W. (1942): The Use of Sand-Beds for Comparing Relative Stilling Basin Performance. Trans. American Geophysical Union 23, Part II: 633–639.

    Article  ADS  Google Scholar 

  • Blaisdell, F.W. (1948): Development and Hydraulic Design, Saint Anthony Falls Stilling Basin. Trans. ASCE 113: 483–561.

    Google Scholar 

  • Blee, C.E. (1929): Tests on Model Dam Determine Baffle Weir Design. Engineering News Record 103: 931–933.

    Google Scholar 

  • Blevins, R.D. (1984): Applied Fluid Dynamics Handbook. Van Nostrand Rein-hold: New York.

    Google Scholar 

  • Bokaian, A.R. (1982): Fast-Water Streams Deflected by Transverse Walls. Proc. Institution Civil Engineer Part 2, 73: 747–767.

    Article  Google Scholar 

  • Bowers, C.E. & Toso, J. (1988): Karnafuli Project, Model Studies of Spillway Damage. J. Hydraulic Engineering ASCE, 114(5): 469–483; Discussions 1990, 116(6): 850–855.

    Article  Google Scholar 

  • Bowers, C.E. & Tsai, F.Y. (1969): Fluctuating Pressures in Spillway Stilling Basins. Proc. ASCE, J. Hydraulics Division 95(HY6): 2071–2079. Discussions 1970, 96(HY6): 1369–1370; 1970, 96(HY7): 1640–1643; 1970, 96(HY8): 1754–1758; 1971, 97(HY3): 454–455.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957a): The Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I). Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1401: 1–24. Discussion 1958, 84(HY2), Paper No. 1616: 25–30; 1958, 84(HY5), Paper No. 1832: 61–63.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957b): The Hydraulic Design of Stilling Basins: High Dams, Earth Dams, and Large Canal Structures (Basin II). Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1402: 1–14. Discussion 1958, 84(HY2), Paper No. 1616: 31–32.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957c): Hydraulic Design of Stilling Basins: Short Stilling Basin for Canal Structures, Small Outlet Works, and Small Spillways (Basin III). Proc. ASCE, J. Hydraulics Division 83(HY5) Paper No.1403: 1–22. Discussion 1958, 84(HY2) Paper No.1616: 33–39; 84(HY5) Paper No.1832: 67–70.

    Google Scholar 

  • Bremen, R. (1990): Expanding Stilling Basin. Thesis 850, presented to the Swiss Federal Institute of Technology Lausanne (EPFL): Lausanne.

    Google Scholar 

  • Bremen, R. & Hager, W.H. (1990): Ressauts hydrauliques dans les canaux avec élargissement. XXII Convegno di Idraulica e Costruzioni Idrauliche Cosenza 1: 171–182.

    Google Scholar 

  • Bremen, R. & Hager, W.H. (1991): T-Jump in Abruptly Expanding Channel. J. Hydraulic Research, (submitted).

    Google Scholar 

  • Bretz, N.V. (1985): Etude hydraulique d’un evacuateur. Ingénieurs et Architects Suisses 111(3): 39–46.

    Google Scholar 

  • Bretz, N.V. (1987): Ressaut hydraulique forcé par seuil. Thesis 699, presented to the Swiss Federal Institute of Technology, Lausanne (EPFL). Appeared also as Communication 2, ed. R. Sinniger, Laboratoire de Constructions Hydrauliques, EPFL: Lausanne.

    Google Scholar 

  • Breusers, H.N.S. (1967): Time Scale of Two-dimensional Local Scour. XII IAHR Congress Fort Collins, 3(C32): 275–283.

    Google Scholar 

  • Breusers, H.N.C. & Raudkivi, A.J. (1991): Scouring. IAHR Hydraulic Structures Design Manual 2. A.A. Balkema: Rotterdam.

    Google Scholar 

  • Bribiesca, J.L.S. & Fuentes, M.O.A. (1979): Experimental Analysis of Macro-turbulence Effects on the Lining of Stilling Basins. XIII ICOLD Congress New Delhi, 3: 85–103.

    Google Scholar 

  • Bruun, P. (1956): Destruction of Wave Energy by Vertical Walls. Proc. ASCE, J. Waterways Division 82(WW1), Paper No.912: 1–13.

    Google Scholar 

  • Burkhardt, E. (1952): Die Energievernichtung an Wehren. Bautechnik 29(12): 343–345.

    Google Scholar 

  • Burns, R.V. & White, C.M. (1938): The Protection of Dams, Weirs, and Sluices against Scour. Proc. Institution Civil Engineers 10: 23–47. Discussions 1938, 12: 251–271; 1940, 14: 594–596.

    Google Scholar 

  • Butcher, A.D.D. & Atkinson, J.D. (1932): The Causes and Prevention of Bed Erosion, with Special Reference to the Protection of Structures Controlling Rivers and Canals. Minutes, Proc. Institution Civil Engineers 235: 175–278.

    Google Scholar 

  • Campbell, F.B. (1966): Hydraulic Design of Rock Riprap. US Army Engineer Waterways Experiment Station, Miscellaneous Paper 2–777. Corps of Engineers: Vicksburg.

    Google Scholar 

  • Cassidy, J.J. (1990): Fluid Mechanics and Design of Hydraulic Structures. J. Hydraulic Engineering ASCE 116(8): 961–977.

    Article  Google Scholar 

  • Cavitation in Hydraulic Strutures — A Symposium (1947). Trans. ASCE 112: 2–124.

    Google Scholar 

  • Central Board of Irrigation and Power (1950): The Standing Wave or Hydraulic Jump. 2nd Ed. Government of India: Simla.

    Google Scholar 

  • Central Board of Irrigation and Power (1960): Study of Bucket Type Energy Dissipator with Special Reference to Surge Characteristics. J. Irrigation and Power 17(3): 395–418.

    Google Scholar 

  • Chandra, J. & Lal, P.B. (1978): Spatial Hydraulic Jump at Axis-Symmetrical Sudden Expansions in Rectangular Channels. Indian J. of Power & River Valley Development 28(July): 183–188; 192.

    Google Scholar 

  • Chao, J.L. & Sandborn, V.A. (1966): Evaluation of the Momentum Equation for a Turbulent Wall Jet. J. Fluid Mechanics 26(4): 819–828.

    Article  ADS  Google Scholar 

  • Chatterjee, S.S. & Ghosh, S.N. (1980): Submerged Horizontal Jet Over Erodible Bed. Proc. ASCE, J. Hydraulics Division 106(HY11): 1765–1782; 107(HY4): 530–532; 108(HY6): 797–798.

    Google Scholar 

  • Chitale, S.V. (1959): Energy Dissipation in Hydraulic Jump below Weirs and Falls. J. Irrigation and Power 16(4): 465–477.

    Google Scholar 

  • Cochrane, R.B. (1959): Operation of Spillways in Northwest Projects. Proc. ASCE, J. Hydraulics Division 865(HY8): 7–38.

    Google Scholar 

  • Colaric, P., Pichon, J. & Sananes, F. (1967): Etude des affouillement s à l’aval d’un seuil déversant. XII IAHR Congress Fort Collins 3 (C37): 1–8.

    Google Scholar 

  • Contessini, F. (1940): Ricerche sperimentali su modelli esegutie per una diga tracimabile. L Energia Elettrica 18(3): 139–146.

    Google Scholar 

  • Craik, A.D.D., Latham, R.C., Fawkes, M.J. & Gribbon, P.W.F. (1981): The Circular Hydraulic Jump. J. Fluid Mechanics 112: 347–362.

    Article  ADS  Google Scholar 

  • De Lio, J.C., Tatone, G., Lopardo, R.A., Lara, A. & Badano, N. (1988): Prototype Instrumentation for Pressure Fluctuations. Int. Symp. Model-Prototype Correlation of Hydraulic Structures Colorado Springs: 267–275, ed. P.H. Burgi. ASCE: New York.

    Google Scholar 

  • De Marinis, G. (1988): Dissipazioni di energia in corrente ipercritica in presenza di un salto di fondo. Idrotecnica 14(3): 247–251.

    Google Scholar 

  • De Souza, P.A. (1975): Hydraulic Jump in Trapezoidal Channel Assisted by Cross-Jet. XVI IAHR Congress Sao Paolo, 5(4.4): 214–219.

    Google Scholar 

  • Dienhart, A.V. (1956): Chute Spillway Preserves St. Anthony Falls. Civil Engineering 26(1): 12–14.

    Google Scholar 

  • Bowers, C.E. & Toso, J. (1988): Karnafuli Project, Model Studies of Spillway Damage. J. Hydraulic Engineering ASCE, 114(5): 469–483; Discussions 1990, 116(6): 850–855.

    Article  Google Scholar 

  • Bowers, C.E. & Tsai, F.Y. (1969): Fluctuating Pressures in Spillway Stilling Basins. Proc. ASCE, J. Hydraulics Division 95(HY6): 2071–2079. Discussions 1970, 96(HY6): 1369–1370; 1970, 96(HY7): 1640–1643; 1970, 96(HY8): 1754–1758; 1971, 97(HY3): 454–455.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957a): The Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I). Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1401: 1–24. Discussion 1958, 84(HY2), Paper No. 1616: 25–30; 1958, 84(HY5), Paper No. 1832: 61–63.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957b): The Hydraulic Design of Stilling Basins: High Dams, Earth Dams, and Large Canal Structures (Basin II). Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1402: 1–14. Discussion 1958, 84(HY2), Paper No. 1616: 31–32.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957c): Hydraulic Design of Stilling Basins: Short Stilling Basin for Canal Structures, Small Outlet Works, and Small Spillways (Basin III). Proc. ASCE, J. Hydraulics Division 83(HY5) Paper No.1403: 1–22. Discussion 1958, 84(HY2) Paper No.1616: 33–39; 84(HY5) Paper No.1832: 67–70.

    Google Scholar 

  • Bremen, R. (1990): Expanding Stilling Basin. Thesis 850, presented to the Swiss Federal Institute of Technology Lausanne (EPFL): Lausanne.

    Google Scholar 

  • Bremen, R. & Hager, W.H. (1990): Ressauts hydrauliques dans les canaux avec élargissement. XXII Convegno di Idraulica e Costruzioni Idrauliche Cosenza 1: 171–182.

    Google Scholar 

  • Bremen, R. & Hager, W.H. (1991): T-Jump in Abruptly Expanding Channel. J. Hydraulic Research, (submitted).

    Google Scholar 

  • Bretz, N.V. (1985): Etude hydraulique d’un evacuateur. Ingénieurs et Architects Suisses 111(3): 39–46.

    Google Scholar 

  • Bretz, N.V. (1987): Ressaut hydraulique forcé par seuil. Thesis 699, presented to the Swiss Federal Institute of Technology, Lausanne (EPFL). Appeared also as Communication 2, ed. R. Sinniger, Laboratoire de Constructions Hydrauliques, EPFL: Lausanne.

    Google Scholar 

  • Breusers, H.N.S. (1967): Time Scale of Two-dimensional Local Scour. XII IAHR Congress Fort Collins, 3(C32): 275–283.

    Google Scholar 

  • Breusers, H.N.C. & Raudkivi, A.J. (1991): Scouring. IAHR Hydraulic Structures Design Manual 2. A.A. Balkema: Rotterdam.

    Google Scholar 

  • Bribiesca, J.L.S. 8c Fuentes, M.O.A. (1979): Experimental Analysis of Macro-turbulence Effects on the Lining of Stilling Basins. XIII ICOLD Congress New Delhi, 3: 85–103.

    Google Scholar 

  • Bruun, P. (1956): Destruction of Wave Energy by Vertical Walls. Proc. ASCE, J. Waterways Division 82(WWl), Paper No.912: 1–13.

    Google Scholar 

  • Burkhardt, E. (1952): Die Energievernichtung an Wehren. Bautechnik 29(12): 343–345.

    Google Scholar 

  • Burns, R.V. & White, C.M. (1938): The Protection of Dams, Weirs, and Sluices against Scour. Proc. Institution Civil Engineers 10: 23–47. Discussions 1938, 12: 251–271; 1940, 14: 594–596.

    Google Scholar 

  • Butcher, A.D.D. & Atkinson, J.D. (1932): The Causes and Prevention of Bed Erosion, with Special Reference to the Protection of Structures Controlling Rivers and Canals. Minutes, Proc. Institution Civil Engineers 235: 175–278.

    Google Scholar 

  • Campbell, F.B. (1966): Hydraulic Design of Rock Riprap. US Army Engineer Waterways Experiment Station, Miscellaneous Paper 2–777. Corps of Engineers: Vicksburg.

    Google Scholar 

  • Cassidy, J.J. (1990): Fluid Mechanics and Design of Hydraulic Structures. J. Hydraulic Engineering ASCE 116(8): 961–977.

    Article  Google Scholar 

  • Cavitation in Hydraulic Strutures — A Symposium (1947). Trans. ASCE 112: 2–124.

    Google Scholar 

  • Central Board of Irrigation and Power (1950): The Standing Wave or Hydraulic Jump. 2nd Ed. Government of India: Simla.

    Google Scholar 

  • Central Board of Irrigation and Power (1960): Study of Bucket Type Energy Dissipator with Special Reference to Surge Characteristics. J. Irrigation and Power 17(3): 395–418.

    Google Scholar 

  • Chandra, J. & Lal, P.B. (1978): Spatial Hydraulic Jump at Axis-Symmetrical Sudden Expansions in Rectangular Channels. Indian J. of Power & River Valley Development 28(July): 183–188; 192.

    Google Scholar 

  • Chao, J.L. & Sandborn, V.A. (1966): Evaluation of the Momentum Equation for a Turbulent Wall Jet. J. Fluid Mechanics 26(4): 819–828.

    Article  ADS  Google Scholar 

  • Chatterjee, S.S. & Ghosh, S.N. (1980): Submerged Horizontal Jet Over Erodible Bed. Proc. ASCE, J. Hydraulics Division 106(HY11): 1765–1782; 107(HY4): 530–532; 108(HY6): 797–798.

    Google Scholar 

  • Chitale, S.V. (1959): Energy Dissipation in Hydraulic Jump below Weirs and Falls. J. Irrigation and Power 16(4): 465–477.

    Google Scholar 

  • Cochrane, R.B. (1959): Operation of Spillways in Northwest Projects. Proc. ASCE, J. Hydraulics Division 865(HY8): 7–38.

    Google Scholar 

  • Colaric, P., Pichon, J. & Sananes, F. (1967): Etude des affouillement s à l’aval d’un seuil déversant. XII IAHR Congress Fort Collins 3 (C37): 1–8.

    Google Scholar 

  • Contessini, F. (1940): Ricerche sperimentali su modelli esegutie per una diga tracimabile. L Energia Elettrica 18(3): 139–146.

    Google Scholar 

  • Craik, A.D.D., Latham, R.C., Fawkes, M.J. & Gribbon, P.W.F. (1981): The Circular Hydraulic Jump. J. Fluid Mechanics 112: 347–362.

    Article  ADS  Google Scholar 

  • De Lio, J.C., Tatone, G., Lopardo, R.A., Lara, A. & Badano, N. (1988): Prototype Instrumentation for Pressure Fluctuations. Int. Symp. Model-Prototype Correlation of Hydraulic Structures Colorado Springs: 267–275, ed. P.H. Burgi. ASCE: New York.

    Google Scholar 

  • De Marinis, G. (1988): Dissipazioni di energia in corrente ipercritica in presenza di un salto di fondo. Idrotecnica 14(3): 247–251.

    Google Scholar 

  • De Souza, P.A. (1975): Hydraulic Jump in Trapezoidal Channel Assisted by Cross-Jet. XVI IAHR Congress Sao Paolo, 5(4.4): 214–219.

    Google Scholar 

  • Dienhart, A.V. (1956): Chute Spillway Preserves St. Anthony Falls. Civil Engineering 26(1): 12–14.

    Google Scholar 

  • Dietz, J.W. (1972): Modellversuche über die Kolkbildung. Bautechnik 49(5): 162–168

    Google Scholar 

  • Dietz, J.W. (1972): Modellversuche über die Kolkbildung. Bautechnik 49(7): 240–245.

    Google Scholar 

  • Dietz, J.W. (1973): Sicherung der Flussohle unterhalb von Wehren und Sperrwerken. Wasserwirtschaft 63(3): 76–83.

    Google Scholar 

  • Dixon, G.G. (1928): Studies of Prevention of Scour Below Overfall Dams. Engineering News-Record 100(18): 696–698

    Google Scholar 

  • Dixon, G.G. (1928): Studies of Prevention of Scour Below Overfall Dams. Engineering News-Record 100(20): 776

    Google Scholar 

  • Dixon, G.G. (1928): Studies of Prevention of Scour Below Overfall Dams. Engineering News-Record 101: 178.

    Google Scholar 

  • Doddiah, D. (1965): Study on the Relative Merits of Different Types of End Sills and Baffle Piers in the Stilling Basin for Energy Dissipation of High Velocity Flow. XI IAHR Congress Leningrad, 1(27): 1–9.

    Google Scholar 

  • Doddiah, D. (1967): Scour Below Submerged Solid Bucket-Type Energy Dissi-pator. XII IAHR Congress Fort Collins, 3(C13): 1–12.

    Google Scholar 

  • Ehrenberger, R. (1928): Modellversuche über eine Sturzbettsicherung (Zahnschwelle) am Zollhaus a.d. Saalach. Wasserwirtschaft 21(8): 125–127.

    Google Scholar 

  • Ehrenberger, R. (1930): Zwei Modellversuche betreffend die Energievernichtung an Wehren. Wasserwirtschaft 23(17): 297–304.

    Google Scholar 

  • Einwachter, J. (1930): Wehre und Sohlenabstürze. Oldenbourg: München und Berlin.

    Google Scholar 

  • Elder, R.A. (1961): Model-Prototype Turbulence Scaling. IX IAHR Congress Dubrovnik: 24–31.

    Google Scholar 

  • Elevatorsky, E.A. (1959): Hydraulic Energy Dissipators. McGraw-Hill Book Company: New York — Toronto — London.

    Google Scholar 

  • El-Kashab, A.M. (1987): Pressure Fluctuations on the Floor of Hydraulic Jumps. Hydraulic Engineering Williamsburg (Va); ASCE National Conference, Aug.3–7, 1987, R.M. Ragan editor: 116–121.

    Google Scholar 

  • Faktorovitch, M.E. (1965): Energy Dissipation in the Process of Interaction of Impinging Flows. XI IAHR-Congress Leningrad, 1(51): 1–10.

    Google Scholar 

  • Fanelli, M. (1965): II risalto circolare. IX Convegno di Idraulica Trieste III(B1): 371–375.

    Google Scholar 

  • Farhoudi, J. & Narayanan, R. (1991): Force on Slab Beneath Hydraulic Jump. J. Hydraulic Engineering ASCE 117(1): 64–82.

    Article  Google Scholar 

  • Farhoudi, J. & Smith, K.V.H. (1982): Time Scale for Scour Downstream of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 108(HY10): 1147–1162

    Google Scholar 

  • Farhoudi, J. & Smith, K.V.H. (1982): Time Scale for Scour Downstream of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 109(8): 1182–1183.

    Google Scholar 

  • Fiorotto, V. (1990): Un approccio bidimensionale alio studio delia stabilita delle protezioni di fondo in bacini di dissipazione. XXII Convegno di Idraulica e Costruzioni Idrauliche Cosenza 1: 283–294.

    Google Scholar 

  • Fiorotto, V. & Rinaldo, A. (1988): Sul dimensionamento delle protezioni di fondo in bacini di dissipazione: Nuovi resultati teorici e sperimentali. Giornale del Genio Civile 126: 179–201.

    Google Scholar 

  • Forster, J.W. &. Skrinde, R.A. (1950): Control of the Hydraulic Jump by Sills. Trans. ASCE 115: 973–1022.

    Google Scholar 

  • France, P.W. (1981a): An Investigation of a Jet-Assisted Hydraulic Jump. Journal Hydraulic Research 19(4): 325–337

    Article  Google Scholar 

  • France, P.W. 1982, An Investigation of a Jet-Assisted Hydraulic Jump. Journal Hydraulic Research 20(4): 363–364.

    Article  Google Scholar 

  • France, P.W. (1981b): Analysis of the Hydraulic Jump within a Diverging Rectangular Channel. Proc. Institution Civil Engineers Part 2, 71(Jun): 369–378. Discussion 1981, 71(Dec): 237–239.

    Google Scholar 

  • Frank, J. (1943): Der Wechselsprung und die Bemessung der Tosbecken an Wehren. Wasserkraft und Wasserwirtschaft 38(3): 49–57.

    Google Scholar 

  • Frega, G.A. (1968): Contributo alla studio teorico delle vasche smorzatrici a risalto idraulico in sezione rettangolare. L’Energia Elettrica 45(9): 618–622.

    Google Scholar 

  • Frega, G.A. (1970): Sulla condizione piu sfavorevole per il proporzionamento delle vasche smorzatrici a risalto idraulico in sezione rettangolare. XII Convegno di Idraulica e Costruzioni Idrauliche Bari: 76–81.

    Google Scholar 

  • Fröhlich, E. (1925): Kolkungen und Sicherungsarbeiten am Stauwehr Augst-Wyhlen. Schweizerische Bauzeitung 85(26): 329–335.

    Google Scholar 

  • Führböter, A. (1986): Hydrodynamische Belastung der Sohlsicherung des Eidersperrwerkes. Bauingenieur 61: 319–328.

    Google Scholar 

  • Gaikwad, S.R., Kumthekar, M.J., Khatsuria, R.M., Khurjekar, M.J., Deolalikar, P.B. & Bhosekar, V.V. (1987): Consideration of Macroturbulent Pressure Fluctuations in Design of Divide Walls of Stilling Basins. Int. Symposium on New Technology in Model Testing in Hydraulic Research Pune (India), 1: 127–131.

    Google Scholar 

  • Gamosta, S.K., Mittal, M.K. & Pande, P.K. (1977): Hydrodynamic Forces on Baffle Blocks in Hydraulic Jump. XVII IAHR Congress Baden-Baden, 4(C56): 453–460.

    Google Scholar 

  • Gandolfo, J.S. & Cotta, R.D. (1955): Dissipator d’énergie. VI IAHR-Congress La Haye, C23: 1–9.

    Google Scholar 

  • Gedney, R.H. (1961): Stilling Basin Damage at Chief Joseph Dam. Proc. ASCE, J. Hydraulics Division 87(HY2): 97–120.

    Google Scholar 

  • Gerber, S., Jardin, H. & Nougaro, J. (1960): Contribution à l’étude du ressaut hydraulique en canal horizontal provoqué par exhaussement brusque du radier. Archiwum Hydrotechniki 7(1): 3–25.

    Google Scholar 

  • Gerndt, R.D. (1971): Beitrag zur Untersuchung der Bewegungsvorgänge in Tosbecken mit geradliniger, allmählicher Erweiterung. Thesis presented to the Technical University of Aachen; appeared also as Mitteilung 3, ed. Prof. Borkenstein. Institut für Wasserbau, Technical University Aachen: Aachen.

    Google Scholar 

  • Gerodetti, M. (1985): Drag Coefficient on Pyramidal Baffle Blocks. Water Power & Dam Construction 37(Mar): 26–28.

    Google Scholar 

  • Gieseler, O. (1978): Einfluss der äquivalenten Sandrauhigkeit auf die Lage des Wechselsprungs bei Umlenkung eines frei fallenden runden Flüssigkeitsstrahles an einer ebenen Platte. Technischer Bericht 21, Inst. Wasserbau, TH Darmstadt: Darmstadt, Germany.

    Google Scholar 

  • Gill, M.A. (1980): Effect of Boundary Roughness on Hydraulic Jump. Water Power & Dam Construction 32(Jan): 22–24.

    Google Scholar 

  • Gruner, H.E. (1926): Mitteilungen über einen Vergleich zwischen Modellversuchen und Beobachtungen in der Natur. Schweizerische Bauzeitung 88(5): 87–88.

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(3): 25–28

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(4): 37–40

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(5): 49–52

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(5): 60

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(6): 73

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(8): 97–98

    Google Scholar 

  • Gruner, H.E. &. Locher, E. (1918): Mitteilung über Versuche zur Verhütung von Kolken an Wehren. Schweizerische Bauzeitung 71(16): 179–180.

    Google Scholar 

  • Guinea, P.M., Lucas, P. & Aspuru, J.J. (1973): Selection of Spillways and Energy Dissipators. XI ICOLD Congress Madrid, Q.41, R.66: 1233–1254.

    Google Scholar 

  • Gumensky, D.B. (1954): Design of Side Walls in Chutes and Spillways. Trans. ASCE 119: 355–372.

    Google Scholar 

  • Gunko, F.G. (1967): Macroturbulence of Flows Below Spillways of Medium Head Dams and Their Protection Against Undermining. XII IAHR Congress Fort Collins 2(B16): 135–143.

    Google Scholar 

  • Guo, Z. (1988): Energy Dissipation of High-Velocity Flow. The International Symposium on Hydraulics for High Dams Beijing: 17–32.

    Google Scholar 

  • Gupta, S.N. & Varshney, R.S. (1968): Wave Suppressor for Pulsating Flow. J. Irrigation and Power 25(2): 169–175.

    Google Scholar 

  • Hager, W.H. (1985a): B-Jumps at Abrupt Channel Drops. Proc. ASCE, J. Hydraulic Engineering 111(5): 861–866.

    Article  Google Scholar 

  • Hager, W.H.(1985b): Hydraulic Jump in Non-Prismatic Rectangular Channels. J. Hydraulic Research 23(1): 21–35. Discussion 1985, 23(A): 386–389.

    Article  Google Scholar 

  • Hager, W.H. (1988): Venturi Flume of Minimum Space Requirements. J. Irrigation and Drainage Engineering ASCE, 114(2): 226–243;

    Article  Google Scholar 

  • Hager, W.H. (1988): Venturi Flume of Minimum Space Requirements. J. Irrigation and Drainage Engineering ASCE, 115(5): 913.

    Article  Google Scholar 

  • Hager, W.H. (1990a): Energie-Dissipation an Auslaufbauwerken. Gas-Wasser-Abwasser 70(2): 123–130.

    Google Scholar 

  • Hager, W.H. (1990b): Strömungsverhältnisse in Rohr- und Kanal-Erweiterungen. Oesterreichische Wasserwirtschaft 42(12): 305–312.

    Google Scholar 

  • Hager, W.H., Basler, B. & Wanoschek, R. (1986): Incipient Jump Condition for Ventilated Sill Flow. J. Hydraulic Engineering ASCE, 112(10): 953–963.

    Article  Google Scholar 

  • Hager, W.H. & Bretz, N.V. (1986): Hydraulic Jumps at Positive and Negative Steps. J. Hydraulic Research 24(4): 237–253. Discussion 1987, 25(3): 407–413.

    Article  Google Scholar 

  • Hager, W.H. & Bretz, N.V. (1988): Sill-Controlled Stilling Basin. Int. Symposium on Hydraulics of High Dams Beijing: 273–280.

    Google Scholar 

  • Hager, W.H. & Kawagoshi, N. (1990): Hydraulic Jumps at Rounded Drop. Proc. Institution Civil Engineers 89: 443–470.

    Article  Google Scholar 

  • Hager, W.H. & Li, D. (1991): Sill-Controlled Energy Dissipator. J. Hydraulic Research, to be published.

    Google Scholar 

  • Hager, W.H. & Sinniger, R. (1985): Flow Characteristics of the Hydraulic Jump in a Stilling Basin with an Abrupt Bottom Rise. J. Hydraulic Research 23(2): 101–113. Discussion 1986, 24(3): 207–215.

    Article  Google Scholar 

  • Hager, W.H. & Sinniger, R. (1989): Tosbecken mit Quer schwel le. Wasser, Energie, Luft 81(4/5): 73–77.

    Google Scholar 

  • Haindl, K. (1963): Outflow from a Tunnel into a Riverbed. VIII Convegno di Idraulica Pisa, C(8): 1–9.

    Google Scholar 

  • Haindl, K. (1965): The Surface Regime and its Influence on the Function of the Stilling Basin Below Chutes. XI IAHR-Congress Leningrad, 1(17): 1–9.

    Google Scholar 

  • Hanko, Z. (1961): Investigations to Determine the Necessary Length of the Lining Following the Stilling Basin of the Bottom Drops on Small Water Courses. IX IAHR Congress Dubrovnik: 1029–1042.

    Google Scholar 

  • Harleman, D.R.F. (1955): Effect of Baffle Piers on Stilling Basin Performance. J. Boston Society of Civil Engineering 42(2): 84–99.

    Google Scholar 

  • Harrold, J.C. (1947): Experiences of the Corps of Engineers. Trans. ASCE 112: 16–42.

    Google Scholar 

  • Hart, E.D. (1984): Prototype Studies of Corps of Engineers Structures Experiencing Cavitation Damage. Water for Resource Development Coeur d’Alène, Proc. ASCE National Conference, Aug. 14–17. 1984, D.L. Schreiber, editor: 427–431.

    Google Scholar 

  • Hartung, F. (1962): Das Gegenstrom-Tosbecken. Wasserwirtschaft 52(6): 145–147.

    Google Scholar 

  • Hartung, F. (1970): Die strömungstechnische Entwicklung in Konstruktion und Gestaltung der Staustufen. Tiefbau 12(3): 201–230.

    Google Scholar 

  • Hartung, F. (1972): Gestaltung von Hochwasserentlastungsanlagen bei Talsperrendämmen. Wasserwirtschaft 62(1/2): 39–51.

    MathSciNet  Google Scholar 

  • Hartung, F. & Csallner, K. (1967a): The Scouring Energy of the Macroturbulent Flow Downstream of a Hydraulic Jump. XII IAHR Congress Fort Collins 3(C27): 1–10.

    Google Scholar 

  • Hartung, F. &. Csallner, K. (1967b): Zur Frage der Tosbecken bei Flusswehren. Wasserwirtschaft 57(2): 100–101.

    Google Scholar 

  • Hartung, F. & Knauss, J. (1967): Developments to Improve Economy, Capacity and Efficiency of Structures Controling the Passage of Flood Water Through Reservoirs. IX ICOLD Congress Istamboul, Q.33, R.14: 227–249.

    Google Scholar 

  • Haszpra, O. (1965): The Role of the Surface Hydraulic Jump in Designing the Tailwater Apron of River Barrages. XI IAHR-Congress Leningrad, 1(24): 1–8.

    Google Scholar 

  • Hepler, T.E. & Johnson, P.L. (1988): Analysis of Spillway Failures by Uplift. Hydraulic Engineering Colorado Springs, ASCE National Conference, Aug.8–12, 1988; S.R. Abt and J. Gessler editors: 857–862.

    Google Scholar 

  • Herbrand, K. (1970): Der räumliche Wechselsprung — Literaturstudie. Bericht 18, ed. F. Hartung, Versuchsanstalt für Wasserbau der Technischen Universität München, Oscar v. Miller Institut: München/Obernach.

    Google Scholar 

  • Herbrand, K. (1971): Das Tosbecken mit seitlicher Aufweitung. Bericht 21, ed. F. Hartung, Versuchsanstalt für Wasserbau der Technischen Universität München, Oscar v. Miller Institut: München/Obernach.

    Google Scholar 

  • Herbrand, K. (1973): The Spatial Hydraulic Jump. J. Hydraulic Research 11(3): 205–217. Discussion 1974, 12(3): 389–400.

    Article  Google Scholar 

  • Herbrand, K. &. Knauss, J. (1973): Computation and Design of Stilling Basins with Abruptly or Gradually Enlarged Boundaries. XI ICOLD Congress Madrid, Q.41, R.4: 57–79.

    Google Scholar 

  • Hofbauer, R. (1915): Ein Mittel zur Bekämpfung der Wirbelbewegung unterhalb der Stauwehre. Zeitschrift österreichischer Ingenieur- und Architektenverein 67(13/14): 109–112;

    Google Scholar 

  • Hofbauer, R. (1915): Ein Mittel zur Bekämpfung der Wirbelbewegung unterhalb der Stauwehre. Zeitschrift österreichischer Ingenieur- und Architektenverein 67(15/16): 130–133.

    Google Scholar 

  • Hughes, W.C. &. Flack, J.E. (1984): Hydraulic Jump Properties over a Rough Bed. J. Hydraulic Engineering ASCE, 110(12): 1755–1771.

    Article  Google Scholar 

  • Hunt, J.C.R., Abell, C.J., Peterka, J.A. & Woo, H. (1978): Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization. J. Fluid Mechanics 86: 179–200.

    Article  ADS  Google Scholar 

  • ICOLD (1987): Spillways for Dams. ICOLD-Bulletin 58. Commission Internationale des Grands Barrages: Paris.

    Google Scholar 

  • Ingram, L.F., Oltman, R.E. & Tracy, H.J. (1956): Surface Profiles at a Submerged Overfall. Proc. ASCE, J. Hydraulics Division 82(HY4), Paper No.1038: 12–16. Discussions 1957, 83(HY2), Paper No.1230: 41–45.

    Google Scholar 

  • Iwasa, Y., Nakagawa, H. & Nakano, A. (1965): Several Features of Hydraulic Jump Formed by Weir with Trapezoidal Section. XI IAHR-Congress Leningrad, 1(36): 1–9.

    Google Scholar 

  • Izumi, M. (1988): Drag Coefficient on Baffle Blocks. Trans. JSIDRE (Jun): 99–106.

    Google Scholar 

  • Jagannadha Rao, M.V. & Srinivasa Rao, K. (1982): Hydraulic Jump at a Large Drop. J. Irrigation and Power 39(1): 93–98.

    Google Scholar 

  • Jaeger, C. (1936): Der Mischungsvorgang bei plötzlichem Querschnitts-Uebergang. Wasserkraft und Wasserwirtschaft 31(24): 306–309.

    Google Scholar 

  • Jayapragasam, R. (1987): Design Criteria for Stability of Stilling Basins Based on Model Studies. Int. Symposium New Technology in Model Testing in Hydraulic Research Pune (India), 1: 115–120.

    Google Scholar 

  • Joglekar, D.V. (1959): Hydraulic Model Studies for Controlling Scour Below Spillways of Dams. J. Irrigation and Power 16(1): 52–76.

    Google Scholar 

  • Jourdan, J.W. & Reed, O. (1929): Hydraulic Jump Design for a 100 Sec.-Ft. Conduit. Engineering News-Record 103: 224–225.

    Google Scholar 

  • Junrui, D. & Yongxiang, L. (1988): An Experimental Study of the Turbulent Flow in the Stilling Basin with Dentated Sills. Int. Symposium on Hydraulics of High Dams Beijing: 428–434.

    Google Scholar 

  • Kao, T.-Y. (1971): Hydraulic Jump Assisted by Cross-Jet. Proc. ASCE, J. Hydraulics Division 97(HY12): 2037–2050. Discussions 1972, 98(HY9): 1729–1730; 1972, 98(HY12): 2232–2234; 1973, 99(HY7): 1151.

    Google Scholar 

  • Karki, K.S. (1976): Supercritical Flow over Sills. Proc. ASCE, J. Hydraulics Division 102(HY10): 1449–1459. Discussions 1977, 103(HY5): 584–585; 1977, 103(HY10): 1245–1247; 1978, 104(HY4): 571.

    Google Scholar 

  • Karki, K.S., Chander, S. & Malhotra, R.C. (1972): Supercritial Flow over Sills at Incipient Jump Conditions. Proc. ASCE, J. Hydraulics Division 98(HY10): 1753–1764. Discussion 1973, 99(HY8): 1278–1279; 1974, 100(HY3): 481–482.

    Google Scholar 

  • Kawagoshi, N. & Hager, W.H. (1990): Wave Type Flow at Abrupt Drops — I. Flow Geometry. J. Hydraulic Research 28(2): 235–252.

    Article  Google Scholar 

  • Keener, K.B. (1944): Spillway Erosion at Grand Coulee Dam. Engineering News Record 133(2): 41–47.

    Google Scholar 

  • Keutner, C. (1936): Massnahmen zur Bekämpfung der Kolkbildung stromab von Stauanlagen mit Wehrboden. Bauingenieur 17(27/28): 279–289.

    Google Scholar 

  • Khalifa, A.M. & McCorquodale, J.A. (1979): Radial Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 105(HY9): 1065–1078.

    Google Scholar 

  • Khapaeva, A.K. (1970): Hydraulic Jump over a Smooth or Rough Bottom Regarded as a Wall Jet. Izvestiya VNIIG 92: 234–245.

    Google Scholar 

  • Khatsuria, R.M. & Deolalikar, P.B. (1987): Various Approaches for Determining Thickness of Apron Lining of Stilling Basins — An Avaluation in Respect of Adequacy. Int. Symposium on New Technology in Model Testing in Hydraulic Research Pune (India), 1: 121–125.

    Google Scholar 

  • Kiselev, P.G. (1973): Conjugate Depths of a Hydraulic Jump. Hydrotechnical Constructions 7: 870–874.

    Article  Google Scholar 

  • Knauss, J. (1971): Hydraulische Probleme beim Entwurf von Hochwasserent-lastungsanlagen an grossen und kleinen Staudämmen. Bericht 22, F. Hartung ed. Versuchsanstalt für Wasserbau, Technische Universität München, O. v. Miller Institut: München/Obernach.

    Google Scholar 

  • Knauss, J. (1980): Besondere Erfahrungen und konstruktive Konsequenzen aus Modellversuchen für Entlastungsanlagen an deutschen Talsperren. Wasserwirtschaft 70(3): 84–88.

    Google Scholar 

  • Koch, K. (1968): Die gegenseitige Strahlablenkung auf horizontaler Sohle. Bericht 15, F. Hartung ed. Versuchsanstalt für Wasserbau, Technische Universität München, O. v. Miller Institut: München/Obernach.

    Google Scholar 

  • Koloseus, H.J. (1984): Scour due to Riprap and Improper Filters. J. Hydraulic Engineering ASCE, 110(10): 1315–1324.

    Article  Google Scholar 

  • Koloseus, H.J. & Ahmad, D. (1969): Circular Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 95(HY1): 409–422. Discussion 1969, 95(HY6): 2197–2200; 1970, 96(HY7): 1610–1611.

    Google Scholar 

  • Kozeny, J. (1932): Wassersprung und Energieumwandlung. Wasserkraft und Wasserwirtschaft 27(1): 9–10. Discussion 27(15): 177–178. Errata 27(5): 60.

    Google Scholar 

  • Kudo, A. (1984): Study on the Control of the Hydraulic Jump by Abrupt-Rise and Leveled-Reverse Jet. Trans. JSIDRE 114(12): 107–115.

    MathSciNet  Google Scholar 

  • Kudo, A. (1988): Flow Characteristics of Hydraulic Fluctuations of the Hydraulic Jump. Symp. on Applied Hydraulics Japanese Society of Irrigation, Drainage and Reclamation Engineering, Kyoto University, May 26: 1–12 (in Japanese with English Summary).

    Google Scholar 

  • Kuttiammu, T.P. & Rao, J.V. (1951): Bhavani Type Stilling Basin for Spillways of Large Dams. IV ICOLD Congress New Delhi, Q.12, R.44(2): 397–414.

    Google Scholar 

  • Lakshmana Rao, N.S. & Suryanarayana Rao, H.S. (1968): Some Studies on New Types of Friction Blocks. J. Irrigation and Power 25(1): 29–40.

    Google Scholar 

  • Lando, L.R. & Seminara, G. (1970): Analisi del comport amento di alcuni tipi di dissipatori. XII Convegno di Idraulica e Costruzioni Idrauliche Bari: 87–95.

    Google Scholar 

  • Lane, E.W. & Bingham, W.F. (1935): Protection Against Scour Below Overfall Dams. Engineering News-Record 114: 373–378.

    Google Scholar 

  • Lane, E.W. & Lee, J.D. (1945): Prototype Verifies Hydraulic Model Tests. Civil Engineering 15(12): 556–557.

    Google Scholar 

  • Larras, J. (1962): Ressaut circulaire sur fond parfaitement lisse. Comptes Rendus de l’Académie des Sciences Paris, 255(5): 837–839.

    Google Scholar 

  • Larras, J. (1965): Ressaut circulaire sur fond parfaitement lisse. Le Génie Civil 142: 342–343.

    Google Scholar 

  • Läufer, A. (1921): Einiges über die Anwendung des Dachwehres bei Wasserkraftanlagen und über die Frage der Kolkabwehr. Wasserkraft 16: 281–284.

    Google Scholar 

  • Läufer, A. (1923): Kolksichere Sturzböden. Wasserkraft 18(3): 23–26.

    Google Scholar 

  • Läufer, A. (1928): Wirkungsweise und Kräftespiel an kolksicheren Sturzböden und ähnlichen Einbauten. Wasserwirtschaft 21(26): 499–504.

    Google Scholar 

  • Lawrence, G.A. (1987): Steady Flow over an Obstacle. J. Hydraulic Engineering ASCE, 113(8): 981–991.

    Article  Google Scholar 

  • Lawrence, G.A. (1987): Steady Flow over an Obstacle. J. Hydraulic Engineering ASCE,115(5): 694–699.

    Google Scholar 

  • Lawson, J.D. & Phillips, B.C. (1983): Circular Hydraulic Jump. J. Hydraulic Engineering ASCE, 109(4): 505–518.

    Article  Google Scholar 

  • Lazzari, E. (1970): Ricerca sperimentale sui dissipatori a Bucket cilindrico. L’Acqua 48(5): 119–134.

    Google Scholar 

  • Lehr, G.J. (1926): Ein Beitrag zur Berechnung des Kolkes. Bauingenieur (6): 110–115.

    Google Scholar 

  • Lemos, F.O. & Ferreira, J.P.C.L. (1978): Estruturas compactas para dissi-paçao de energia por ressalto. Memoria 502, Laboratorio Nacional de Engenharia Civil (LNEC): Lisboa.

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 98(HY8): 1367–1385.

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division, 99(HY3): 550–551;

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division, 99(HY4): 698–699;

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 99(HY5): 859–860;

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 99(HYll): 2130–2131.

    Google Scholar 

  • Leutheusser, H.J. & Schiller, E.J. (1975): Hydraulic Jump in a Rough Channel. Water Power & Dam Construction 27(May): 186–191.

    Google Scholar 

  • Leviant, I. (1950): Etude sur certains écoulements radiaux à surface libre. Revue Générale de l’Hydraulique 16(Mar/Apr): 74–82.

    Google Scholar 

  • Locher, F.A. & Hsu, S.T. (1984): Energy Dissipation at High Dams. Developments in Hydraulic Engineering 2, P. Novak, Editor. Elsevier Applied Science Publishers: London and New York.

    Google Scholar 

  • Lopardo, R.A. (1988): Stilling Basin Pressure Fluctuations. Model-Prototype Correlation of Hydraulic Structures Colorado Springs; Int. Symp., Aug. 9–11, 1988, ed. P.H. Burgi: 56–73.

    Google Scholar 

  • Lopardo, R.A., De Lio, J.C. & Vernet, G.F. (1982): Physical Modelling on Cavitation Tendency for Macroturbulence of Hydraulic Jump. Int. Conf. Hydraulic Modelling of Civil Engineering Structures Coventry, England, Sep 22–24. C3: 109–121.

    Google Scholar 

  • Lopardo, R.A., De Lio, J.C. & Vernet, G.F. (1987): The Role of Pressure Fluctuations in the Design of Hydraulic Structures. Design of Hydraulic Structures: 161–175, Ed. A.R. Kia & M.L. Albertson. Colorado State: Denver.

    Google Scholar 

  • Lopardo, R.A., Orellano, J.A. & Vernet, G.F. (1977): Baffle Piers Subjected to Flow-Induced Vibrations. XVII IAHR Congress Baden-Baden, 4(C55): 445–452.

    Google Scholar 

  • Lopardo, R.A. & Vernet, G.F. (1979): Ondes à l’aval des centrales voisines aux evcuateurs de crues. XVIII IAHR Congress Cagliari, 4(Ca9): 73–80.

    Google Scholar 

  • Lord Rayleigh, O.M. (1914): On the Theory of Long Waves and Bores. Proc. Royal Society 90(A): 324–328.

    Article  MATH  Google Scholar 

  • Ludin, A. (1927): Beitrag zur Kolkverhütung an Wehren. Schweizerische Wasserwirtschaft 19(2): 27–29.

    Google Scholar 

  • Ludin, A. (1932): Sind Wasserwalzen Energieverzehrer? Wasserwirtschaft 25(23): 329–330.

    Google Scholar 

  • Lüscher, G. (1927): Ueber Versuche mit Rehbockschen Zahnschwellen. Schweizerische Wasserwirtschaft 19(7): 94–96.

    Google Scholar 

  • Macha, L. (1963): Untersuchungen über die Wirksamkeit von Tosbecken. Dissertation TU Berlin, appeared also as Mitteilung 61 (Teil 1) and 62 (Teil 2), Institut für Wasserbau und Wasserwirtschaft, TU Berlin: Berlin.

    Google Scholar 

  • Magalhaes, L.E. (1981): Lateral Diffusion of a Sluice Jet Discharged Along a Wall. V Canadian Hydrotechnical Conference Fredericton NB: 951–956.

    Google Scholar 

  • Magalhaes L.E. & Minton, P. (1975): Design Implications of Hydraulic Jumps at Sudden Enlargements. Proc. Institution Civil Engineers 59: 169–174;

    Article  Google Scholar 

  • Magalhaes L.E. & Minton, P. (1975): Design Implications of Hydraulic Jumps at Sudden Enlargements. Proc. Institution Civil Engineers 59: 569–570.

    Article  Google Scholar 

  • Magalhaes, A. Pinto de (1979): Bacias de dissipaçao de energia divergentes em planta de secçao rectangular e con fundo horizontal. Memoria 529. Laboratorio Nacional de Engenharia Civil (LNEC): Lisboa.

    Google Scholar 

  • Maniak, U. (1966): Gesetzmässigkeiten für die Abmessung von Höckerschwellen zur schadlosen Energieumwandlung hinter Wehren. Mitteilung 12, F. Zimmermann, ed. Leichtweiss Institut für Wasserbau und Grundbau, TH Braunschweig: Braunschweig.

    Google Scholar 

  • Martin, H.M. & Wagner, W.E. (1961): Experience in Turbulence in Hydraulic Structures. IX IAHR Congress Dubrovnik: 153–172.

    Google Scholar 

  • Mason, P.J. (1982): The Choice of Hydraulic Energy Dissipator for Dam Outlet Works Based on a Survey of Prototype Usage. Proc. Institution Civil Engineers 72(May): 209–219. Discussions 74(Feb): 123–126.

    Google Scholar 

  • Matsushita, F. (1988): The Scouring Characteristics of Hydraulic Jumps During Abrupt Drops. Trans. JSIDRE 133(2): 113–122.

    Google Scholar 

  • Maynord, S.T., Ruff, J.A. & Abt, S.R. (1989): Riprap Design. J. Hydraulic Engineering ASCE, 115(7): 937–949;

    Article  Google Scholar 

  • Maynord, S.T., Ruff, J.A. & Abt, S.R. (1989): Riprap Design. J. Hydraulic Engineering ASCE, 116(4): 609;

    Google Scholar 

  • Maynord, S.T., Ruff, J.A. & Abt, S.R. (1989): Riprap Design. J. Hydraulic Engineering ASCE, 117(4): 540–544.

    Google Scholar 

  • Mazumder, S.K. & Gupta, B.K. (1987): Development of Stilling Basin With Diverging Side-Walls. Int. Symposium on New Technology in Model Testing in Hydraulic Research, Pune (India), 1: 99–104.

    Google Scholar 

  • Mazumder, S.K. &. Naresh, H.S. (1988): Use of Appurtenances for Economic and Efficient Design of Jump-Type Dissipator Having Diverging Side Walls for Flumed Canal Falls. J. Institution Engineers 68(5): 284–290.

    Google Scholar 

  • Mazumder, S.K. & Sharma, A. (1983): Stilling Basins with Diverging Side Walls. XX IAHR-Congress Moscow, 7: 490–492.

    Google Scholar 

  • McCorquodale, J.A. (1986): Hydraulic Jumps and Internal Flows. Encyclopedia of Fluid Mechanics 1, Flow Phenomena and Measurement: 122–173, ed. N.P. Cheremisinoff. Gulf Publishing Company: Houston.

    Google Scholar 

  • McCorquodale, J.A. & Giratalla, M.K. (1972): Supercritical Flow over Sills. Proc. ASCE, J. Hydraulics Division 98(HY4): 667–679.

    Google Scholar 

  • McCorquodale, J.A. & Khalifa, A.M. (1980): Submerged Radial Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 106(HY3): 355–367;

    Google Scholar 

  • McCorquodale, J.A. & Khalifa, A.M. (1980): Submerged Radial Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 107(HY2): 243.

    Google Scholar 

  • McCorquodale, J.A. & Regts, E.H. (1968): A Theory for the Forced Hydraulic Jump. Trans. Engineering Institute Canada 11(C-1, Aug): 1–9.

    Google Scholar 

  • McPherson, M.B. & Karr, M.H. (1957): A Study on Bucket-Type Energy Dissipator Characteristics. Proc. ASCE, J. Hydraulics Division 83(HY3) Paper No.1266: 1–11. Discussions 1957, 83(HY4) Paper No. 1348: 57–64? 1957, 83(HY5) Paper No.1417: 33–36; 1958, 84(HY1) Paper No.1558: 43–45; 1958, 84(HY5) Paper No. 1832: 41–48.

    Google Scholar 

  • Mehrotra, S.C. (1974): Circular Jumps. Proc. ASCE, J. Hydraulics Division 100(HY8): 1133–1140. Discussion 1975, 101(HY7): 1029–1031: No Closure.

    Google Scholar 

  • Mele, P. & Viti, M. (1977): Ressaut hydraulique avec recirculation. La Houille Blanche 33(4): 321–324.

    Article  Google Scholar 

  • Meyer-Peter, E. (1927): Die hydraulischen Modellversuche für das Limmat-kraftwerk Wettingen der Stadt Zürich. Schweizerische Bauzeitung 89(21): 275–279;

    Google Scholar 

  • Meyer-Peter, E. (1927): Die hydraulischen Modellversuche für das Limmat-kraftwerk Wettingen der Stadt Zürich. Schweizerische Bauzeitung 89(22): 291–297. Discussion 1927, 90(4): 51–52.

    Google Scholar 

  • Miami Conservancy District (1921): Hydraulic-Jump Pools Effective. Engineering News-Record 86(18): 764.

    Google Scholar 

  • Miami Valley Flood-Protection Work (1917): Dam and Outlet Problems. Engineering News-Record 77(4): 144–151.

    Google Scholar 

  • Mikhalev, M.A. (1970): Contribution to the Theory of a Hydraulic Jump at a Rough Apron. Izvestiya VNIIG 92: 223–233.

    Google Scholar 

  • Ming, J. (1988): Conditions for the Alternative Flow. International Symposium on Hydraulics for High Dams Beijing: 76–82.

    Google Scholar 

  • Mirajgoaker, A.G. (1962): Drag on a Cubical Roughness in Open Channel Flow. J. Irrigation and Power 19(3): 399–408.

    Google Scholar 

  • Mirajgaoker, A.G. & Swaroop, A. (1967): Studies of Efficiency of Energy Dissipating Blocks. J. Irrigation and Power 24(1): 9–20? Discussion 25(2): 227–229.

    Google Scholar 

  • Mohamed Ali, H.S. (1991): Effect of Roughened-Bed Stilling Basin on Length of Rectangular Hydraulic Jump. J. Hydraulic Engineering ASCE 117(1): 83–93.

    Article  Google Scholar 

  • Moore, W.L. (1943): Energy Loss at the Base of a Free Overfall. Trans. ASCE 108: 1343–1392.

    Google Scholar 

  • Moore, W.L. & Morgan, C.N. (1959): Hydraulic Jump at an Abrupt Drop. Trans. ASCE 124: 507–524.

    Google Scholar 

  • Mosonyi, E. (1952): Verfahren zur Bestimmung der hydraulischen Oberflächenrauhigkeit. Acta Technica Academiae Scientiarum Hungaricae, 4: 325–346.

    Google Scholar 

  • Mosonyi, E. (1955): Hydraulic Roughness Determined by Measuring the Distance of the Hydraulic Jump. VI IAHR Congress The Hague 4(D24): 1–6.

    Google Scholar 

  • Mura Hari, V. (1973): Regimes of Forced Hydraulic Jump. Water Resources Bulletin 9(3): 613–617.

    Article  Google Scholar 

  • Mura Hari, V. (1976): The Drag on a Baffle Block Under Forced Hydraulic Jumps. Water Power & Dam Construction 28(Nov): 28–31.

    Google Scholar 

  • Murashige, H., Fukui, Y. St Kikkawa, H. (1984): On Energy Dissipation due to Hydraulic Jump Accompanied with a Vertical Jet. J. Hydraulic Engineering (China), 342(2): 161–169.

    Google Scholar 

  • Murthy, Y.K. St Divatia, E. (1982): Behaviour of Stilling Basins in Large Spillways. J. Irrigation and Power 39(2): 181–188.

    Google Scholar 

  • Muser, R. (1969): Widerstandskräfte und Energiedissipation bei Verteilerklötzen im Wechselsprung. Thesis for the Requirements of Doctor of Technical Sciences presented to the Technical University of Karlsruhe: Karlsruhe.

    Google Scholar 

  • Muskatirovic, D. St Batinic, B. (1977): The Influence of Abrupt Change of Channel Geometry on Hydraulic Regime Characteristics. XVII IAHR-Congress Baden-Baden, 2(A125): 397–404; Discussion 6: 243.

    Google Scholar 

  • Naib, S.K.A. (1984): Hydraulic Research on Irrigation Canal Falls. Channel and Channel Control Structures 1: 59–73. Springer-Verlag: Berlin.

    Google Scholar 

  • Naka, T., Onizuka, K., Yoshino, H. St Iwasaki, K. (1989): Flow Dispersion in a Steep Channel. Trans. JSIDRE 141(6): 63–69.

    Google Scholar 

  • Narasimham, R.K.V. St Krishnamurthy, G.R. (1957): Basic Experiments on Stilling Basins Without Friction Blocks. J. Irrigation Power 14(1): 46–52

    Google Scholar 

  • Narayanan, R. St Schizas, L.S. (1980a): Force Fluctuations on Sill of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 106(HY4): 589–599.

    Google Scholar 

  • Narayanan, R. & Schizas, L.S. (1980b): Force on Sill of Forced Jump. Proc. ASCE, J. Hydraulics Division 106(HY7): 1159–1172. Discussion 1981, 107(HY7): 949–951; 1982, 108(HY2): 285.

    Google Scholar 

  • Naudascher, E. (1987): Hydraulik der Gerinne und Ge r i nne bauwe r ke. Springer: Wien-New York.

    Google Scholar 

  • Nebbia, G. (1938a): Sul proporzionamento di traverse a soglia prolungata per dissipatori a risalto. Acqua e Gas 27(3): 73–100.

    Google Scholar 

  • Nebbia, G. (1938b): Sui fenomeni di escavazione di fondo a valle di luci a battente od a stramazzo. Acqua e Gas 27(4): 109–136.

    Google Scholar 

  • Nebbia, G. (1940): Sui dissipatori a risalto di Bidone. L’Energia Elett-rica 17(3): 125–138;

    Google Scholar 

  • Nebbia, G. (1940): Sui dissipatori a risalto di Bidone. L’Energia Elett-rica 17(6): 325–355.

    Google Scholar 

  • Nebbia, G. (1941): Sui dissipatori a risalto di Bidone — Norme di Proporzionamento. L’Energia Elettrica 18(7): 441–454;

    Google Scholar 

  • Nebbia, G. (1941): Sui dissipatori a risalto di Bidone — Norme di Proporzionamento. L’Energia Elettrica 18(8): 533–546.

    Google Scholar 

  • Nebbia, G. (1942): Su taluni fenomeni alternativi in correnti libere. L’Energia Elettrica 19(1).

    Google Scholar 

  • Nettleton, P.C. & McCorquodale, J.A. (1983): Radial Stilling Basins with Baffles. 6th Canadian Hydrotechnical Conference Ottawa: 651–670.

    Google Scholar 

  • Nettleton, P.C. & McCorquodale, J.A. (1989): Radial Flow Stilling Basins With Baffle Blocks. Canadian Journal Civil Engineering 16(4): 489–497.

    Article  Google Scholar 

  • Nielson, K.D. (1989): Design of Low Froude Number Stilling Basins. Design of Hydraulic Structures ‘89: 303–309, M.L. Albertson and R.A. Kia ed. A.A. Balkema: Rotterdam-Brookfield.

    Google Scholar 

  • Nik Hassan, N.M.K. & Narayanan, R. (1985): Local Scour Downstream of an Apron. J. Hydraulic Engineering ASCE, 111(11): 1371–1385.

    Article  Google Scholar 

  • Noseda, G. (1963): La formazione del risalto lungo una corrente veloce in espansione. VIII Convegno di Idraulica Pisa, A4: 1–11.

    Google Scholar 

  • Noseda, G. (1964): Un fenomeno di instabilità del risalto lungo una corrente veloce in espansione. L’Energia Elettrica 41(4): 249–254.

    Google Scholar 

  • Novak, P. (1955): Study of Stilling Basins with Special Regard to Their End Sill. VI IAHR Congress The Hague, (C.15): 1–14.

    Google Scholar 

  • Novak, P. &. Cabelka, J. (1981): Models in Hydraulic Engineering. Pitman: Boston — London — Melbourne.

    Google Scholar 

  • Novak, P., Moffat, A.I.B., Nalluri, C. & Narayanan, R. (1989): Hydraulic Structures. Unwin Hyman: London.

    Google Scholar 

  • Ohtsu, I. (1981): Forced Hydraulic Jump by a Vertical Sill. Trans. Japanese Society Civil Engineers 13: 165–168.

    Google Scholar 

  • Ohtsu, I., Yasuda, Y. & Yamanaka, Y. (1991): Drag on Vertical Sill of Forced Jump. J. Hydraulic Research 29(1): 29–47.

    Article  Google Scholar 

  • Oram, H.P. (1927): Concentrated Flow Erodes Rock Below Wilson Dam. Engineering News-Record 98(5): 190–192.

    Google Scholar 

  • Palomba, B., Rasulo, G. & Taglialatela, L. (1980): Diga sulla fiumarella di Genzano — Vasca di smorzamento. XVII Convegno di Idraulica e Costru-zioni Idrauliche Palermo, A16: 1–16.

    Google Scholar 

  • Pandarinath, B.K. & Pundarikanthan, N.V. (1977): Scour Studies Below Stilling Basins. VI Australian Hydraulics and Fluid Mechanics Conference Adelaide: 245–248.

    Google Scholar 

  • Peruginelli, A. & Pagliaria, S. (1989): Studio del risalto ondulara in corrispondenza di un salto di fondo in alveo di canale a seziona trapezia.

    Google Scholar 

  • Peruginelli, A. &. Viti, C. (1988): Analisi del risalto in corrispondenza di un salto di fondo in alveo a seziona trapezia. XXI Convegno di Idraulica e Costruzioni Idrauliche L’Aguila 1: 671–685.

    Google Scholar 

  • Peterka, A.J. (1958): Hydraulic Design of Stilling Basins and Energy Dissipators. Engineering Monograph 25. US Department Interior, Bureau of Reclamation: Denver, Col. (Appeared also as 7th Printing in 1983).

    Google Scholar 

  • Petrikat, K., Abdul Khader, M.H. & Knoll, M. (1969): Vibration due to Pressure Fluctuation on Baffle Piers in Cavitating — Supercavitating Flows. XIII IAHR Congress Kyoto, 5(1–8): 1–5.

    Google Scholar 

  • Pezzoli, G. (1969): La stabilita del risalto idraulico negli alvei non prismatici. L’Energia Elettrica 46(11): 753–758.

    Google Scholar 

  • Pillai, N. (1969): Stilling Basins with Wedge-Shaped Baffle Blocks. Water and Water Engineering 73(12): 506–509.

    Google Scholar 

  • Pillai, N.N. (1987): On Stability and Economy of Stilling Basins for Barrages. Int. Symposium on New Technology in Model Testing in HydraulicResearch Pune (India), 1: 105–109.

    Google Scholar 

  • Pillai, N.N., Goel, A. & Dubey, A.K. (1989): Hydraulic Jump Type Stilling Basin for Low Froude Numbers. J. Hydraulic Engineering ASCE, 115(7): 989–994.

    Article  Google Scholar 

  • Pillai, N. & Unny, T.E. (1964): Shapes for Appurtenances in Stilling Basins. Proc. ASCE, J. Hydraulics Division 90(HY3): 1–21. Discussions 1964, 90(HY6): 343–347; 1965, 91(HYl): 164–166; 1965, 91(HY5): 135–139.

    Google Scholar 

  • Pircher, W. (1979): Die Hochwasserentlastung des Staudammes Pinios-Ilias in Griechenland. Oesterreichische Wasserwirtschaft 31(5/6): 162–170.

    Google Scholar 

  • Popovic, P. (1967): Importance of Hydraulic Model Tests of Flood Discharge Structures. Saopstenja Instituta za Vodoprivredu ‘Jaroslav Cerni’ 14(41): 57–61.

    Google Scholar 

  • Press, H. & Bretschneider, H. (1964): Der Pineios-Damm bei Kenton in Griechenland. Wasserwirtschaft 54(11): 311–317.

    Google Scholar 

  • Provorova, T.P. (1978): Equations for Hydraulic Design of Baffles with Different Slopes of the Forward Face. Fluid Mechanics Soviet Research 7(6): 120–126.

    Google Scholar 

  • Rahman, M.A. (1972): Damage to Karnafuli Dam Spillway. Proc. ASCE, J. Hydraulics Division 98(HY12): 2155–2170; Discussions 1973, 99(HYll): 2148–2154; 1974, lOO(HYll): 1720–1721.

    Google Scholar 

  • Rahmeyer, W. (1988): Alternate Designs for the Sidewalls of Hydraulic Jump Stilling Basins. Hydraulic Engineering, Proc. ASCE National Conference, Colorado Springs, S.R. Abt and J. Gessler ed.: 963–968.

    Google Scholar 

  • Rai, S.P. (1986): Wall-Wakes in Moderate Adverse Pressure Gradients. J. Hydraulic Research 24(5): 377–390.

    Article  MathSciNet  Google Scholar 

  • Rajan, B.H. & Shivashankara Rao, K.N. (1980): Design of Solid Roller Buckets. J. Irrigation and Power 37(4): 435–444.

    Google Scholar 

  • Rajan, B.H., Shivashankara Rao, K.N., Gowda, G. & Raghavendra, V.J. (1982): An Experimental Study of the Shapes of Spillway Buckets. J. Irrigation and Power 39(1): 75–83.

    Google Scholar 

  • Rajaratnam, N. (1964): The Forced Hydraulic Jump. Water Power 16(Jan): 14–19; 16(Feb): 61–65.

    Google Scholar 

  • Rajaratnam, N. (1967): Hydraulic Jumps. Advances in Hydroscience 4: 197–280, ed. V.T. Chow. Academic Press: New York.

    Google Scholar 

  • Rajaratnam, N. (1968): Hydraulic Jumps on Rough Beds. Trans. Engineering Institute of Canada 11(A-2): 1–8.

    Google Scholar 

  • Rajaratnam, N. &. Murahari, V. (1971): A Contribution to Forced Hydraulic Jumps. J. Hydraulic Research 9(2): 217–240.

    Article  Google Scholar 

  • Rajaratnam, N. & Ortiz, N.V. (1977): Hydraulic Jumps and Waves at Abrupt Drops. Proc. ASCE, J. Hydraulics Division 103(HY4): 381–394.

    Google Scholar 

  • Rajaratnam, N. 8c Rai, S.P. (1979): Plane Turbulent Wall Wakes. Proc. ASCE, J. Engineering Mechanics Division 105(EM5): 779–794.

    Google Scholar 

  • Rajaratnam, N. & Subramanya, K. (1968): Hydraulic Jumps below Abrupt Symmetrical Expansions. Proc. ASCE, J. Hydraulics Division 94(HY2): 481–503. Discussion 1969, 95(HY2): 723–724; 1970, 96(HY2): 579.

    Google Scholar 

  • Rama Murthy, A.S. & Seetharamiah, K. (1961): Energy Dissipation by Body Shapes at High Velocity Flow. J. Irrigation and Power 18(4): 300–314.

    Google Scholar 

  • Ramamurthy, A.S. & Basak, S. (1973): Linear Humps in Wide Channel Expansions. Water Power 25(Dec): 467–472.

    Google Scholar 

  • Ramos, C.M. (1982): Estruturas de dissipaçao de energia por jactos cruzados — Criterios de dimensionamento. Memoria 577, Laboratorio Nacional de Engenharia Civil (LNEC): Lisboa.

    Google Scholar 

  • Rand, W. (1957): An Approach to Generalized Design of Stilling Basins. Trans. New York Academy Sciences 20(2): 173–191.

    Article  Google Scholar 

  • Rand, W. (1965): Flow over a Vertical Sill in an Open Channel. Proc. ASCE, J. Hydraulics Division 91(HY4): 97–121.

    Google Scholar 

  • Rand, W. (1966): Flow over a Dentated Sill in an Open Channel. Proc. ASCE, J. Hydraulics Division 92(HY5): 135–153.

    Google Scholar 

  • Rand, W. (1966): Flow over a Dentated Sill in an Open Channel. Proc. ASCE, J. Hydraulics Division Discussion 1967, 93(HY3): 229–230;

    Google Scholar 

  • Rand, W. (1966): Flow over a Dentated Sill in an Open Channel. Proc. ASCE, J. Hydraulics Division 1968, 94(HY1): 307–308.

    Google Scholar 

  • Rand, W. (1967): Efficiency and Stability of Forced Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 93(HY4): 117–127.

    Google Scholar 

  • Rand, W. (1967): Efficiency and Stability of Forced Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 94(HY3): 774;

    Google Scholar 

  • Rand, W. (1967): Efficiency and Stability of Forced Hydraulic Jump. Proc. ASCE, J. Hydraulics Division, 94(HY6): 1528.

    Google Scholar 

  • Rand, W. (1970): Sill-Controlled Flow Transitions and Extent of Erosion. Proc. ASCE, J. Hydraulics Division 96(HY4): 927–939;

    Google Scholar 

  • Rand, W. (1970): Sill-Controlled Flow Transitions and Extent of Erosion. Proc. ASCE, J. Hydraulics Division 97(HY2): 359–360.

    Google Scholar 

  • Ranga Raju, K.G. & Garde, R.J. (1970): Resistance of an Inclined Plate Placed on a Plane Boundary in Two-Dimensional Flow. J. Basic Engineering 92(3): 21–31.

    Article  Google Scholar 

  • Ranga Raju, K.G., Kitaal, M.K., Verma, M.S. & Ganeshan, V.R. (1980): Analysis of Flow over Baffle Blocks and End Sills. J. Hydraulic Research 18(3): 227–241.

    Article  Google Scholar 

  • Ranga Raju, K.G. & Singh, V. (1975): Blockage Effects on Drag of Sharp-Edged Bodies. J. Industrial Aerodynamics 1: 301–309.

    Article  Google Scholar 

  • Rao, K.N.S. (1982): Design of Energy Dissipators for Large Capacity Spillways. Trans. Int. Symposium on Layout of Dams in Narrow Gorges Rio de Janeiro, 1: 311–328.

    Google Scholar 

  • Reeve, L.N. (1932): Erosion Below Conowingo Dam Proves Value of Model Tests. Engineering News-Record 108: 127–130.

    Google Scholar 

  • Rehbock, T. (1917): Betrachtungen über Abfluss, Stau und Walzenbildung bei fliessenden Gewässern. Julius Springer: Berlin.

    Google Scholar 

  • Rehbock, T. (1921): Die Berechnung der Wasserspiegellage bei fliessenden Gewässern unter Berücksichtigung der in den Flussbetten auftretenden Wasserwalzen. Wasserkraft 16(4): 30–34;

    Google Scholar 

  • Rehbock, T. (1921): Die Berechnung der Wasserspiegellage bei fliessenden Gewässern unter Berücksichtigung der in den Flussbetten auftretenden Wasserwalzen. Wasserkraft 16(5): 44–47.

    Google Scholar 

  • Rehbock, T. (1926): Die Bekämpfung der Sohlen-Auskolkung bei Wehren durch Zahnschwellen. Schweizerische Bauzeitung 87(3): 27–31;

    Google Scholar 

  • Rehbock, T. (1926): Die Bekämpfung der Sohlen-Auskolkung bei Wehren durch Zahnschwellen. Schweizerische Bauzeitung, 87(4): 44–46.

    Google Scholar 

  • Rehbock, T. (1926): Die Bekämpfung der Sohlen-Auskolkung bei Wehren durch Zahnschwellen. Schweizerische Bauzeitung, 87(7): 85–86. Also published as separate in 1925, Buchdruckerei C.F. Müller: Karlsruhe.

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Schweizerische Wasserwirtschaft 20(3): 35–40;

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Schweizerische Wasserwirtschaft, 20(4): 53–58.

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Bauingenieur 9(4): 57–60;

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Bauingenieur 9(5): 78–81;

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Bauingenieur 9(14): 249;

    Google Scholar 

  • Rehbock, T. (1928): Die Verhütung schädlicher Kolke bei Sturzbetten. Bauingenieur 9(50): 926.

    Google Scholar 

  • Rehbock, T. (1939): Modellversuche über Kolkbildung und Schützengestaltung bei den Doppelschützen-Wehren Ryburg-Schwörstadt im Hochrhein und Flix im Ebro. Bauingenieur 20(11/12): 137–141.

    Google Scholar 

  • Riegel, R.M. & Beebe, J.C. (1917): The Hydraulic Jump as a Means of Dissipating Energy. Miami Conservancy District, Technical Reports Part III: 60–111. Dayton (Ohio).

    Google Scholar 

  • Rinaldo, A. (1985): Un criterio di dimensionamento delle protezioni di fondo in bacini di smorzamento. Giornale del Genio Civile 123(4): 165–186

    Google Scholar 

  • Roberson, J.A., Lin C.Y., Rutherford, G.S. & Stine, M.D. (1972): Turbulence Effects on Drag of Sharp-Edged Bodies. Proc. ASCE, J. Hydraulics Division 98(HY7): 1187–1203.

    Google Scholar 

  • Roberson, J.A., Lin C.Y., Rutherford, G.S. & Stine, M.D. (1972): Turbulence Effects on Drag of Sharp-Edged Bodies. Proc. ASCE, J. Hydraulics Division, 99(HY9): 1627–1630; No Closure.

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(2): 18–20;

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(3):30–33;

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(4): 44–46;

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(9): 102–106;

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(10): 111–114;

    Google Scholar 

  • Roth, H. (1917): Kolk-Erfahrungen und ihre Berücksichtigung bei der Ausbildung beweglicher Wehre. Schweizerische Bauzeitung 70(11): 128–129.

    Google Scholar 

  • Rothmund, H. (1966): Energieumwandlung durch Strahlumlenkung in einer Toskammer. Bericht 6, ed. F. Hatung. Versuchsanstalt für Wasserbau, Technische Hochschule München-Obernach, Oskar von Miller Institut: München/Obernach.

    Google Scholar 

  • Rouse, H., Bhootha, B.V. & Hsu, E.Y. (1951): Design of Channel Expansions. Trans. ASCE 116: 326–346.

    Google Scholar 

  • Rouse, H., Siao, T.T. & Nagaratnam, S. (1959): Turbulence Characteristics of the Hydraulic Jump. Trans. ASCE 124: 926–966.

    Google Scholar 

  • Rozanov, N.P. & Obidov, B.M. (1987): Hydrodynamic Loads on an Apron with Cavitating Dissipators. Hydrotechnical Construction 21(8): 458–460.

    Article  Google Scholar 

  • Rozanov, N.P., Razakov, R.M. & Kaveshnikov, A.T. (1971): Cavitation Tests on Baffle Piers and Bucket Splitters of Spillway Hydraulic Structures. XIV IAHR Congress Paris, 5: 57–60.

    Google Scholar 

  • Rubatta, A. (1963): Il risalto idraulico in canale divergente. L’Energia Elettrica 40(10): 783–790.

    Google Scholar 

  • Rubatta, A. (1964): Il risalti idraulico in canale convergente. L’Energia Elettrica 41(5): 329–334.

    Google Scholar 

  • Rudavsky, A.B. (1976): Selection of Spillways and Energy Dissipators in Preliminary Planing of Dam Developments. XII ICOLD Congress Mexico, Q.46, R.9: 153–180.

    Google Scholar 

  • Ruipeng, W. (1988): Selection of Energy Dissipator With Large Unit Discharge. Int. Symposium on Hydraulics for High Dams Beijing: 265–272.

    Google Scholar 

  • Sackmann, L.A. & Reitzer, H. (1962): Contribution à l’étude des jets bi-dimensionnels. — Déviation théorique et expérimentale. Comptes Rendus de l’Académie des Sciences Paris, 255: 638–640.

    Google Scholar 

  • Samad, M.A., Pflaum, J.M., Taggart, W.C. & McLaughlin, R.E. (1986): Modelling of the Undular Jump for Lehite Water Bypass. Water Forum ‘86, Long Beach, 1: 714–721., M. Karamouz, ed. ASCE: New York.

    Google Scholar 

  • Schmidt, F.W. (1920): Vor- und Sturzbetten an Stauanlagen mit besonderer Berücksichtigung der Wehranlagen auf angeschwemmtem Untergrunde. Zeitschrift für Bauwesen 70: 556–596.

    Google Scholar 

  • Schoklitsch, A. (1926): Energievernichter. Wasserkraft 21(10): 108–115.

    Google Scholar 

  • Schoklitsch, A. (1928): Kolkbildung und Kolkabwehr unterhalb von Stauwerken. Wasserkraft und Wasserwirtschaft 23(15): 217–222.

    Google Scholar 

  • Schoklitsch, A. (1935): Stauraumverlandung und Kolkabwehr. Springer: Wien.

    Google Scholar 

  • Schoklitsch, A. (1951): Berechnung der Kolktiefen flussab eines Stauwerkes. Wasser- und Energiewirtschaft 43(2): 23–27.

    Google Scholar 

  • Schröder, R. (1957): Untersuchungen über diskontinuierliche Abflussvorgänge in Freispiegelgerinnen. Dissertation TU Berlin; appeared also as Mitteilung 48, Institut für Wasserbau, TU Berlin: Berlin.

    Google Scholar 

  • Schulz, A.B. (1957): Die Ursachen der Randkolkbildung. Wasserwirtschaft 47(12): 301–305.

    Google Scholar 

  • Scimeni, E. (1939): Sulla relazione che interceda fra gli scavi osservati nelle opere idrauliche originali e nei modelli. L’Energia Elettrica 16(11): 789–794.

    Google Scholar 

  • Seetharamiah, K. St Rama Murthy, A.S. (1961): Hydraulic Jump Stabilisation. J. Institution Engineers 42: 306–318

    Google Scholar 

  • Seetharamiah, K. St Rama Murthy, A.S. (1961): Hydraulic Jump Stabilisation. J. Institution Engineers 44: 811.

    Google Scholar 

  • Sethuraman, V. & Padmanabhan, M. (1967): Studies on Spatial Hydraulic Jump. Proc. Sixth Symp. of the Civil and Hydraulic Engineering Department High Velocity Flows, Indian Institute of Science, Bangalore (India), B3: 1–10.

    Google Scholar 

  • Sharma, H.R. (1963): Der räumliche Wechselsprung und seine Probleme. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 12(6): 1731–1738.

    Google Scholar 

  • Sharma, H.R. (1965): Der geknickte Wechselsprung. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 14(1): 73–79.

    Google Scholar 

  • Sharma, H.R. (1966): The Spatial Jump and its Problems. J. Irrigation and Power 23(4): 431–440.

    Google Scholar 

  • Sharma, H.R. (1973): Die Wirkung von Einbauten in Tosbecken. Wasserwirtschaft — Wassertechnik 23(8): 273–278.

    Google Scholar 

  • Sharp, J.J. (1974): Observations on Hydraulic Jumps at Rounded Step. Proc. ASCE, J. Hydraulics Division 100(HY6): 787–795.

    Google Scholar 

  • Shixia, W. (1987): Scouring of Riverbeds Below Sluices and Dams. Design of Hydraulic Structures A.R. Kia and M.L. Albertson, ed., Colorado State University, Fort Collins, Col.

    Google Scholar 

  • Shterenlikht, D.V. & Maslov, A.B. (1984): Characteristics of the Drag on Baffle Blocks. Hydrotechnical Constructions 18(6): 265–268.

    Article  Google Scholar 

  • Shukry, A. (1957): The Efficiency of Floor Sills under Drowned Hydraulic Jumps. Proc. ASCE, J. Hydraulics Division 83(HY3), Paper No.1260: 1–18. Discussions 1957, 83(HY5), Paper No.1417: 31; 1957, 83(HY6), Paper No.1456: 15–24; 1958, 84(HY1), Paper No.1588: 33–37; 1958, 84(HY5), Paper No.1832: 35–38.

    Google Scholar 

  • Sinniger, R.O. &. Hager, W.H. (1989): Constructions Hydrauliques — Ecoule-ments Stationnaires. Presses Polytechniques Romandes: Lausanne.

    Google Scholar 

  • Smith, C.D. (1988): Outlet Structure Design for Conduits and Tunnels. J. Hydraulic Engineering ASCE, 114(4): 503–515.

    Google Scholar 

  • Smith, C.D. (1989): The Submerged Hydraulic Jump in an Abrupt Lateral Expansion. J. Hydraulic Research 27(2): 257–266. Discussion 1990, 28(3): 387–391.

    Article  ADS  Google Scholar 

  • Sowers, G.F. (1947): Model Study Develops Stepped Transition for Mt. Morris Dam Stilling Basin. Civil Engineering 17(3): 130–131.

    Google Scholar 

  • Spiekermann, G. (1962): Instabile Formen des Schussstrahles beim Ausfluss unter Schützen und seine Kraftwirkungen auf die Schützkonstruktion. Bericht 2, ed. F. Hartung. Versuchsanstalt für Wasserbau, Technische Hochschule München — Oscar von Miller Institut: München/Obernach.

    Google Scholar 

  • Stanley, C.M. (1934): Study of Stilling Basin Design. Trans. ASCE 99: 490–523.

    Google Scholar 

  • Steele, I.C (1926): Baffle Piers at Toe of Dam Dispel Energy of Flow. Engineering News-Record 96(22): 886–889

    Google Scholar 

  • Steele, I.C: Baffle Piers at Toe of Dam Dispel Energy of Flow. Engineering News-Record 1926, 97(20): 800–802.

    Google Scholar 

  • Steele, I.C. & Monroe, R.A. (1929): Baffle-Pier Experiments on Models of Pit River Dams. Trans. ASCE 93: 451–546.

    Google Scholar 

  • Stein, U. (1982): Zur Untersuchung der Strömungskavitation unter Berücksichtigung von Turbulenz, Wirbelbildung und Blasendynamik. Mitteilung 43, ed. G. Rouvé. Institut für Wasserbau und Wasserwirtschaft, RWTH Aachen: Aachen.

    Google Scholar 

  • Stevens, J.C. (1937): Scour Prevention Below Bonneville Dam. Engineering News-Record 118: 61–65.

    Google Scholar 

  • Stevens, M.A., Simons, D.B. & Lewis, G.L. (1976): Safety Factors for Riprap Protection. Proc. ASCE, J. Hydraulics Division 102(HY5): 637–655; 102(HY12): 1791; 103(HY4): 457–458; 103(HY7): 810; 104(HY2): 297–299.

    Google Scholar 

  • Sumi, T. (1988): Forced Hydraulic Jump Type Energy Dissipator with Secondary Dam. Int. Symposium on Hydraulics of High Dams Beijing: 106–113.

    Google Scholar 

  • Suryavanski, B.D., Vaidya, M.P. & Choudhury, B. (1973): Use of Chute Blocks in Stilling Basin Assessment. XI ICOLD Congress Madrid, Q.41, R.56: 1011–1036.

    Google Scholar 

  • Tamura, M. (1973): Designs and Hydraulic Model Investigations of Hydraulic Jump Type Dissipators. XI ICOLD Congress Madrid, Q.41, R.26: 471–488.

    Google Scholar 

  • Task Force on Energy Dissipators for Spillway and Outlet Works (1964): Energy Dissipators for Spillways and Outlet Works. Proc. ASCE, J. Hydraulics Division 90(HY1): 121–147. Discussions 1964, 90(HY4): 359–363; 1964, 90(HY5): 201–222; 1965, 91(HY2): 292–300.

    Google Scholar 

  • Thomas, C.W. (1957): Velocity, Scour and Pressure Measurements from Three Models of the Same Structure. VII IAHR Congress Lisboa A8: 1–16.

    Google Scholar 

  • Tödten, H. (1976): Zur Beurteilung der Energiedissipation von Tosbecken. Bauingenieur 51: 429–433.

    Google Scholar 

  • Tople, S.K.P., Porey, P.D. & Ranga Raju, K.G. (1986): Hydraulic Jump under the Influence of Two-dimensional Cross-Jets. J. Institution Engineers 66(5): 277–283; Discussion 1987, 67(1): 191.

    Google Scholar 

  • Torres, W.J. (1979): On the Designing of Forced Spatial Hydraulic Jump Energy Dissipators. XVIII IAHR-Congress Cagliari, 4(C.a.): 55–62.

    Google Scholar 

  • Toso, J.W. & Bowers, CE. (1988): Extreme Pressures in Hydraulic Jump Stilling Basins. J. Hydraulic Engineering ASCE, 114(8): 829–843.

    Article  Google Scholar 

  • Tung, Y.-K. & Mays, L.W. (1982): Optimal Design of Stilling Basins for Overflow Spillways. Proc. ASCE, J. Hydraulics Division 108(HY10): 1163–1178; llO(HYl): 79–82; No Closure.

    Google Scholar 

  • Tyagi, D.M., Pande, P.K. & Mittal, M.K. (1978): Drag on Baffle Walls in Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 104(HY4): 515–525.

    Google Scholar 

  • United States Army, Corps of Engineers (1956): Cavitation at Baffle Piers. Miscellaneous Paper 2–154. Waterways Experiment Station: Vicksburg, Miss.

    Google Scholar 

  • United States Army, Corps of Engineers (1978): Rock-Lined Transitions. Report 1–110. US Army Engineer District: Los Angeles.

    Google Scholar 

  • United States Army, Corps of Engineers (1974): Spillway Stilling Basin, Hydraulic Jump Type. Memorandum, by T.E. Murphy. Waterways Experiment Station: Vicksburg, Miss.

    Google Scholar 

  • United States, Bureau of Reclamation, USBR (1948): Model Studies of Impe rial Dam, Desilting Works, All-American Canal Structures. Boulder Canyon Project Final Reports. Part IV — Hydraulic Investigation, Bulletin 4: Denver.

    Google Scholar 

  • United States, Bureau of Reclamation, USBR (1965): Research Study on Stilling Basins, Energy Dissipators, and Associated Appurtenances (Preliminary Studies). Report Hyd-544, Denver.

    Google Scholar 

  • United States, Bureau of Reclamation, USBR (1987): Design of Small Dams. 3rd Edition. Department of Interior: Denver.

    Google Scholar 

  • Unny, T.E. (1961): The Spatial Hydraulic Jump. IX IAHR Congress Belgrade: 32–42.

    Google Scholar 

  • Unny, T.E. (1963a): Zur Frage des Energieumwandlungsprozesses in Tosbecken. Bauingenieur 38(7): 247–251.

    Google Scholar 

  • Unny, T.E. (1963b): Zum Entwurf von Tosbecken — Die Entwicklung in Indien und in Amerika. Wasserwirtschaft — Wassertechnik 13(1): 38–42; 13(2): 92–94.

    Google Scholar 

  • Vallentine, H.R. (1967): Radial Flow on a Horizontal Plane. La Houille Blanche 22(3): 279–282.

    Article  Google Scholar 

  • Varshney, R.S. (1965): Stilling Basin Characteristics for Low Froude Numbers. J. Irrigation and Power 22(2): 157–172.

    Google Scholar 

  • Venkataraman, P., Srinivasarao, K., Reddy, Y.M. & Sarma, A.K. (1977): Forced Hydraulic Jump by Continuous Sills in Channels with Small Slopes. Central Board of Irrigation, J. Irrigation and Power 57(3): 246–249.

    Google Scholar 

  • Vennard, J.K. (1947): Nature of Cavitation, Trans. ASCE 112: 2–15.

    Google Scholar 

  • Wang, S.Y. & Shen, H.W. (1983): Incipient Sediment Motion and Riprap Design. J. Hydraulic Engineering ASCE, 111(3): 520–538.

    Article  Google Scholar 

  • Warnock, J.E. (1940): Spillways and Energy Dissipators. Proc. Hydraulics Conference, Studies in Engineering, Bulletin 20: 142–159. University of Iowa: Iowa City.

    Google Scholar 

  • Watson, E.J. (1964): The Radial Spread of a Liquid Jet over a Horizontal Plane. J. Fluid Mechanics 20(3): 481–499.

    Article  MATH  ADS  Google Scholar 

  • Watters, G.Z. & Street, R.L. (1964): Two-Dimensional Flow Over Sills in Open Channels. Proc. ASCE, J. Hydraulics Division 90(HY4): 107–140. (Discussions 1965, 9KHY1): 233–234; 1965, 91(HY2): 372–376; 1965, 91(HY5): 160–162.

    Google Scholar 

  • Weber, R. (1918): Ueber eine neue Kolkabwehrvorrichtung. Schweizerische Wasserwirtschaft 10(13/14): 91–95.

    Google Scholar 

  • Whittington, R.B. & Ali, K.M.H. (1969): Convergent Stilling Basins. Proc. Institution Civil Engineers 43: 157–173.

    Article  Google Scholar 

  • Wilson, E.H. (1977): Stabilisation of the Hydraulic Jump by Jets. Water Power & Dam Construction 29(Mar): 40–45.

    Google Scholar 

  • Witze, P.O. & Dwyer, H.A. (1976): The Turbulent Radial Jet. J. Fluid Mechanics 75(3): 401–417.

    Article  ADS  Google Scholar 

  • Wobus, G. (1958): Zur Praxis der Tosbeckenbemessung. Wissenschaft liche Zeitschrift der TH Dresden 8(4): 707–716.

    Google Scholar 

  • Younkin, L.M. (1987): A Three-Dimensional Hydraulic Jump. Water for Resource Development Coeur d’Alene: 360–364. D.L. Schreiber ed. ASCE: New York.

    Google Scholar 

  • Yuditskii, G.A. (1965): Erosion par cavitation des dissipateurs d’énergie des barrages-déversoirs et les mesures de son élimination. XI IAHR Congress Leningrad 1(8): 1–12.

    Google Scholar 

  • Zhenxing, S. (1988): Hydraulic Test of Local Erosion Behind Standard Roller Bucket. Int. Symp. on Hydraulics for High Dams Beijing: 122–129.

    Google Scholar 

  • Zhiheng, Z. (1988): Hydraulic Computation and Design for Roller Bucket. Int. Symp. on Hydraulics for High Dams Beijing: 114–121.

    Google Scholar 

  • Zimmermann, F. & Maniak, U. (1967): Scours Behind Stilling Basins with Endsills of Baffle-Piers. XII IAHR Congress Fort Collins 3(C14): 1–8.

    Google Scholar 

  • Zolotov, L.A. & Semenkov, V.M. (1985): Trends in Spillway Design with Consideration of Cavitation, Vibration and Dynamic Loads. Hydrotechnical Construction 19(7): 321–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hager, W.H. (1992). Introduction. In: Energy Dissipators and Hydraulic Jump. Water Science and Technology Library, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8048-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8048-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4106-7

  • Online ISBN: 978-94-015-8048-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics