Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 8))

Abstract

A hydraulic jump is a rapidly varied phenomenon in free surface flow. It corresponds to a discontinuous transition from supercritical to sub-critical flows in an open channel where no appurtenances are provided. In general, the fluid considered is water, and the discharge per unit width is larger than 0.1 m3 s-1 such that scale effects are practically eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Part 1. Chapters 1 to 5

  • Abdul Khader, M.H. & Elango, K. (1974): Turbulent Pressure Field Beneath a Hydraulic Jump. J. Hydraulic Research 12(A): 469–489.

    Article  Google Scholar 

  • Addison, H. (1937): Supplementary Notes on Flow Through Model Sluices. J. Inst. Civil Engineerns 8: 53–72;

    Article  Google Scholar 

  • Addison, H. (1937): Supplementary Notes on Flow Through Model Sluices. J. Inst. Civil Engineerns 9: 447–449.

    Article  Google Scholar 

  • Advani, R.M. (1962): A New Method for Hydraulic Jump in Circular Channels. Water Power 16(9): 349–350.

    Google Scholar 

  • Advani, R.M. (1968): Energy Loss Through Hydraulic Jump in Trapozoidal Channels. J. Irrigation and Power 25(1): 105–112.

    Google Scholar 

  • Akbari, M.E., Mittal, M.K. & Pande, P.K. (1982): Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jumps. Int. Conf. Hydraulic Modelling of Civil Engineering Structures Coventry (England) held Sep. 22–24, Cl:87–96.

    Google Scholar 

  • Albertson, M.L., Dai, Y.B., Jensen, R.A. & Rouse, H. (1950): Diffusion of Submerged Jets. Trans. ASCE 115: 639–697.

    Google Scholar 

  • Ali, K.H.M. & Ridgeway, A. (1977): Hydraulic Jumps in Trapozoidal and Triangular Channels. Proc. Institution Civil Engineers 63:203–214;

    Article  Google Scholar 

  • Ali, K.H.M. & Ridgeway, A. (1977): Hydraulic Jumps in Trapozoidal and Triangular Channels. Proc. Institution Civil Engineers 63:761–767.

    Article  Google Scholar 

  • Allen, J. & Hamid, H.I. (1968): The Hydraulic Jump and other Phenomena Associated with Flow under Rectangular Sluice-Gates. Proc. Institution Civil Engineers 40:345–362.

    Article  Google Scholar 

  • Allen, J. & Hamid, H.I. (1968): The Hydraulic Jump and other Phenomena Associated with Flow under Rectangular Sluice-Gates. Discussions 1969, 42:529–533.

    Google Scholar 

  • Andersen, V.M. (1978): Undular Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 104(HY8): 1185–1188.

    Google Scholar 

  • Andersen, V.M. Undular Hydraulic Jump. Proc. ASCE, Discussions 1979, 105(HY9): 1208–1211;

    Google Scholar 

  • Andersen, V.M. Undular Hydraulic Jump. Proc. ASCE, 1980, 106(HY7): 1252–1254.

    Google Scholar 

  • Aravin, V.I. (1935): On the Determination of the Length of Jump. Summary in Italian. L’Energia Elettrica 1936, 13: 412–414.

    Google Scholar 

  • Argyropoulos, P.A. (1957): Theoretical and Experimental Analysis of the Hydraulic Jump in a Parabolic Flume. VII IAHR-Congress Lisbon 2(D12): 1–20.

    Google Scholar 

  • Argyropoulos, P.A. (1961): The Hydraulic Jump and the Effect of Turbulence on Hydraulic Structures. IX IAHR-Congress Dubrovnik: 173–183.

    Google Scholar 

  • Argyropoulos, P.A. (1962): General Solution of the Hydraulic Jump in Sloping Channels. Proc. ASCE, J. Hydraulics Division 88(HY4): 61–75.

    Google Scholar 

  • Ariemma, R. (1958): Nuove formule per il calcelo delle dimensioni del risalto idraulico in alvei a forte pendenza e delle perdite di energia ad esso relative. L’Energia Elettrica 35(7): 650–655.

    Google Scholar 

  • Ashley, W.H. (1926): Experiments on Hydraulic Jumps in Sewer Connections. Engineering News-Record 97(14): 548–550.

    Google Scholar 

  • Au-Yeung, Y. (1972): Solution of Hydraulic Jump in Horizontal Channels by Graphs. Proc. ASCE, J. Hydraulics Division 98(HY8): 1465–1468.

    Google Scholar 

  • Avery, S. & Novak, P. (1975): Oxygen Uptake in Hydraulic Jumps and at Overfalls. XVI IAHR Congress Sao Paolo 3(C38): 329–337;

    Google Scholar 

  • Avery, S. & Novak, P. (1975): Oxygen Uptake in Hydraulic Jumps and at Overfalls. XVI IAHR Congress Sao Paolo 6: 339–341.

    Google Scholar 

  • Babb, A.F. & Aus, H.C. (1981): Measurement of Air in Flowing Water. Proc. ASCE, J. Hydraulics Division 107(HY12): 1615–1630.

    Google Scholar 

  • Bakhmeteff, B.A. (1932): Hydraulics of Open Channels. McGraw-Hill: New York.

    Google Scholar 

  • Bakhmeteff, B.A. & Matzke, A.E. (1936): The Hydraulic Jump in Terms of Dynamic Similarity. Trans. ASCE 100: 630–680.

    Google Scholar 

  • Bakhmeteff, B.A. & Matzke, A.E. (1938): The Hydraulic Jump in Sloped Channels. Trans. ASME 60(HYD-60-l): 111–118.

    Google Scholar 

  • Bazin, H. & Darcy, H. (1865): Recherches expérimentales relatives au remous et à la propagation des ondes. Recherches Hydrauliques, Parties I et II. Académie des Sciences: Paris.

    Google Scholar 

  • Bélanger, J.B. (1828): Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes. Carilian-Goeury: Paris.

    Google Scholar 

  • Benet, F. & Cunge, J.A. (1971): Analyse d’expériences sur les ondulations secondaires dues aux intumescences dans les canaux trapézoïdaux. J. Hydraulic Research 9(1): 11–33.

    Article  Google Scholar 

  • Bhargava, V.P. (1987): Fluctuating Forces on Floors Beneath a Vibrating Flow Control Gate. J. Institution of Engineers (India) 68(9): 92–95.

    MathSciNet  Google Scholar 

  • Binnie, G.M. and others (1967): Engineering of Mangla. Proc. Institution Civil Engineers 38: 337–575

    Google Scholar 

  • Binnie, G.M. and others (1967): Engineering of Mangla. Proc. Institution Civil Engineers 41: 119–203.

    Article  Google Scholar 

  • Blau, E. (1955): Untersuchungen über den Wechselsprung. Wasserwirtschaft — Wassertechnik 5(7): 218–223.

    MathSciNet  Google Scholar 

  • Bock & Natermann (1928): Wasserberuhigungseinrichtungen der Umlauflosen Schiffschleusen des Wesel-Datteln-Kanals. Bauingenieur 7(12): 158–169.

    Google Scholar 

  • Boor, B. (1960): Contribution au calcul de la longueur du ressaut hydraulique. Vodohospodarsky Casopis SAV 8(4): 337–344 (including Summary in French).

    Google Scholar 

  • Bornemann, K.R. (1880): Ueber den Ausfluss bei Schützen und schützenartigen Mündungen. Der Civilingenieur 26: 297–376.

    Google Scholar 

  • Boss, P. (1919): Berechnung der Wasserspiegellage beim Wechsel des Fliesszustandes. Springer: Berlin.

    Book  Google Scholar 

  • Boss, P. (1927): Berechnung der Wasserspiegellage. Forschungsarbeit 284, Verein deutscher Ingenieure, Vdl-Verlag GmbH, Berlin.

    Google Scholar 

  • Bourdon, C. (1963): Abaque pour le calcul du ressaut dans les canaux trapézoidaux. Revue Générale de l’Hydraulique 29(1): 38–40.

    Google Scholar 

  • Boussinesq, J. (1877): Essais sur la théorie des eaux courantes. Memoires présentés par divers savants à l’Académie des Sciences Paris 23: 1–680.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957a): The Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I). Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1401: 1–24.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957a): The Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I). Proc. ASCE, Discussion 1958, 84(HY2), Paper No. 1616:25–30;

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957a): The Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I). Proc. ASCE, Discussion 1958, 84(HY5), Paper No. 1832:61–63.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957e): Hydraulic Design of Stilling Basins — Stilling Basins with Sloping Apron (Basin V), Proc. ASCE, J. Hydraulics Division 83(HY5), Paper No.1405: 1–32.

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957e): Hydraulic Design of Stilling Basins — Stilling Basins with Sloping Apron (Basin V), Proc. ASCE, J. Hydraulics Division Discussions 1958, 84(HY2) Paper No.1616: 41–46;

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957e): Hydraulic Design of Stilling Basins — Stilling Basins with Sloping Apron (Basin V), Proc. ASCE, J. Hydraulics Division 1958, 84(HY2), Paper No.1616: 59–75;

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957e): Hydraulic Design of Stilling Basins — Stilling Basins with Sloping Apron (Basin V), Proc. ASCE, J. Hydraulics Division 1958, 84(HY5) Paper No.1832: 71;

    Google Scholar 

  • Bradley, J.N. & Peterka, A.J. (1957e): Hydraulic Design of Stilling Basins — Stilling Basins with Sloping Apron (Basin V), Proc. ASCE, J. Hydraulics Division 1958, 84(HY5) Paper No.1832: 77–81.

    Google Scholar 

  • Breitenöder, M. & Dorer, H. (1967): Turbulent Diffusion in the Hydraulic Jump. XII IAHR-Conrgess Fort Collins 4(D.15): 137–145.

    Google Scholar 

  • Bresse, J.A.C. (1860): Cours de mecanique appliqué. Part II “Hydraulics”, First Edition. Mallet-Bachelier: Paris.

    Google Scholar 

  • Bretz, N.V. (1987): Ressaut hydraulique forcé par seuil. Thèse 699 pour l’obtention du grade de docteur ès sciences techniques, Ecole Polytechnique Fédérale de Lausanne: Lausanne.

    Google Scholar 

  • Bundschu, F. (1928): Das Wasserauflaufen. Bauingenieur 9(27): 493–497.

    Google Scholar 

  • Bunyan, J. E. (1958): Some Aspects of the Design of Hydraulic Structures in Alluvium. Proc. Institution Civil Engineers 10: 145–162;

    Article  Google Scholar 

  • Bunyan, J. E. (1958): Some Aspects of the Design of Hydraulic Structures in Alluvium. Proc. Institution Civil Engineers 11: 504–509.

    Article  Google Scholar 

  • Busch, F. (1981): The Length of the Free Plane Hydraulic Jump. XIX IAHR-Congress New Delhi Db(15): 299–306.

    Google Scholar 

  • Busch, F. (1982): Die Länge des Wechselsprunges in einem parallelwandigen Rechteckgerinne mit horizontaler Sohle und glatter Wandung. Mitte ilung 100, Institut für Wasserbau und Wasserwirtschaft, TU Berlin, Berlin: 109–130.

    Google Scholar 

  • Caric, D.M. (1977): Flow in Circular Conduits. Water Power & Dam Construction 29(11): 29–33.

    Google Scholar 

  • Certoussov, M.D. (1935): On the Length of the Hydraulic Jump. Summary in Italian. L’Energia Elettrica 1937, 14: 79–82.

    Google Scholar 

  • Chikwendu, L.N. (1963): Equations for Trapozoidal Channel Flow. Civil Engineering and Public Works Review 58(12): 1531–1534.

    Google Scholar 

  • Citrini, D. (1939): II salto di Bidone. L’Energia Elettrica 16: 441–465

    Google Scholar 

  • Citrini, D. (1939): II salto di Bidone. L’Energia Elettrica 16: 518–527.

    Google Scholar 

  • Cola, R. & Fioratti, M. (1986): Esame del comportamento di vasche di dis-sipazione a risalto annegato. XX Convegno di Idraulica e Costruzioni Idrauliche Padova: 730–760.

    Google Scholar 

  • Collins, D.L. (1976): Discharge Computations at River Control Structures. Proc. ASCE, J. Hydraulics Division 102(HY7): 845–863. Discussion 103CHY12): 1481–1484; 104(HY8): 1199.

    Google Scholar 

  • Curtis, D.D., Martinez, J.E. & Vazquez, V. (1956): Coefficient of Contraction for a Submerged Jet. Proc. ASCE, J. Hydraulics Division 82(HY4), Paper 1038: 17–20.

    Google Scholar 

  • Damiani, A. (1961): Indagine sulla ripartizioni delle perdite di carico nel risalto idraulico. Giornale del Genio Civile 99(6): 491–499.

    Google Scholar 

  • Dmitriev, A.F. & Khlapuk, N.N. (1988): Dissipation of Increased Turbulence of a Flow in a Bottom Hydraulic Jump. Hydraulical Construction 23(7): 390–395.

    Article  Google Scholar 

  • Drummond, G.B. (1935): The Design of Stilling Basins for Small Dams and Weirs. Agricultural Engineering 16(8): 319–320.

    Google Scholar 

  • Einwachter, J. (1930): Wehre und Sohlenabstürze. R. Oldenbourg: München.

    Google Scholar 

  • Einwachter, J. (1932a): Berechnung der Deckwalzenbreite des freien Wassersprunges. Wasserkraft und Wasserwirtschaft 27(21): 245–249.

    Google Scholar 

  • Einwachter, J. (1932b): Zur Frage der Wassersprungberechnungen. Wasserkraft und Wasserwirtschaft 27(14): 157–159.

    Google Scholar 

  • Einwachter, J. (1933): Der Wechselsprung mit gestauter Deckwalze. Wasserkraft und Wasserwirtschaft 28(17): 200–202.

    Google Scholar 

  • Einwachter, J. (1935a): Wassersprung- und Deckwalzenlänge. Wasserkraft und Wasserwirtschaft 30(8): 85–88.

    Google Scholar 

  • Einwachter, J. (1935b): Wasserwalzen und Energieumwandlung. Wasserwirt -schaft und Technik 28(29): 302–304? 28(30): 311–315.

    Google Scholar 

  • El-Kashab, A.M. (1987): Pressure Fluctuations on the Floor of Hydraulic Jumps. Hydraulic Engineering ASCE National Conference, Williamsburg (Va), Aug.3–7, 1987; R.M. Ragan, editor: 116–121.

    Google Scholar 

  • Ellms, R.W. (1928): Computation of the Tail-Water Depth of the Hydraulic Jump in Sloping Flumes. Trans. ASME 50(HYD-50–5): 1–10.

    Google Scholar 

  • Ellms, R.W. (1932): Hydraulic Jump in Sloping and Horizontal Flumes. Trans. ASME 54(HYD-54–6): 113–121.

    Google Scholar 

  • Engel, F.V.A.E. (1933): Non-Uniform Flow of Water. The Engineer 155: 392–394;

    Google Scholar 

  • Engel, F.V.A.E. (1933): Non-Uniform Flow of Water. The Engineer 155: 429–430;

    Google Scholar 

  • Engel, F.V.A.E. (1933): Non-Uniform Flow of Water. The Engineer 155: 456–457.

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 4(19): 25–29;

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 4(20): 72–79;

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 4(21): 120–128;

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 5(25): 21–34;

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 5(26): 65–77;

    Google Scholar 

  • Escande, L. (1938): Etude théorique et expérimentale de l’écoulement sous vanne plane. Revue Générale de l’Hydraulique 5(28): 131–139.

    Google Scholar 

  • Escande, L. (1946): Etude de quelques écoulements comportant la formation d’une veine de courant. Publications Scientifiques et Techniques du Ministère de l’Air 163. Gauthier-Villars: Paris.

    Google Scholar 

  • Ewers, J.R. (1987): Volumetrie Aspects of Energy Dissipation. Int. Symposium on New Technology in Model Testing in Hydraulic Research Pune (India), 1: 133–136.

    Google Scholar 

  • Ferriday, R. (1895): The Hydraulic Jump. Engineering News 34(2), Part II: 28.

    Google Scholar 

  • Ferroglio, L. (1939): II risalto idraulico nei canali rettangolari a fondo orizzontale e inclinato. L’Industria 53(9): 357–363; 53(10): 382–387.

    Google Scholar 

  • Flachsbart, O. (1929): Ueber zwei Sätze der theoretischen Hydraulik. Bauingenieur 10(17): 297–300;

    Google Scholar 

  • Flachsbart, O. (1929): Ueber zwei Sätze der theoretischen Hydraulik. Bauingenieur 10(46): 818.

    Google Scholar 

  • Flores, J.O. de Mello (1954): The Hydraulic Jump. La Houille Blanche 10(12): 811–822.

    Article  Google Scholar 

  • Forchheimer, P. (1914): Hydraulik. Teubner: Berlin — Leipzig.

    MATH  Google Scholar 

  • Forchheimer, P. (1925): Ueber den Wassersprung. Wasserkraft 20(14): 238–239.

    Google Scholar 

  • Frank, J. (1938): Der Wasserabfluss unter scharfkantigen Planschützen. Bauingenieur 19(51/52): 699–703.

    Google Scholar 

  • Frank, J. (1942): Schiessen und Strömen im Kreisquerschnitt. Wasserkraft und Wasserwirtschaft 37(2): 25–29.

    Google Scholar 

  • Franke, P.G. (1955): Der Wechselsprung mit freier Deckwalze. Verlag Wilh. Ernst & Sohn: Berlin.

    Google Scholar 

  • Franke, P.G. (1961): The Hydraulic Jump. Indian Journal of Power and River Valley Development 17(8): 21–24.

    Google Scholar 

  • Franke, P.G. & Valentin, F. (1969): The Determination of Discharge Below Gates in Case of Variable Tailwater Conditions. J. Hydraulic Research 7(4): 433–447.

    Article  Google Scholar 

  • Gardel, A. (1948): Contribution an calcul du ressaut hydraulique. Bulletin Technique de la Suisse Romande 74(22): 269–275.

    Google Scholar 

  • Garg, S.P. & Sharma, H.R. (1971): Efficiency of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 97(HY3): 409–420. Discussions 1971, 97(HY9): 1570–1573; 1971, 97(HY10): 1790–1795? 1971, 97(HY11): 1923; 1971, 97(HY12): 2107–2110; 1972, 98(HYl): 278–284; 1973, 99(HY3): 527–529.

    Google Scholar 

  • Gentilini, B. (1938): Studio teorico e sperimentale dell’efflusso sotto paratoie piane. L’Energia Elettrica 25(9): 647–652.

    Google Scholar 

  • Gharangik, A.M. & Chaudhry, M.H. (1991): Numerical Simulation of Hydraulic Jump. J. Hydraulic Engineering ASCE to be published.

    Google Scholar 

  • Gibson, A.H. (1914): The Formation of Standing Waves in an Open Stream. Minutes of Proceedings Inst. Civil Engineers, London 197: 233–242.

    Google Scholar 

  • Gibson, A.H. (1920): Experiments on the Coefficients of Discharge under Rectangular Sluice-Gates. Minutes of Proceedings Inst. Civil Engineers, London 207: 427–434.

    Article  Google Scholar 

  • Gill, M.A. (1980): Effect of Boundary Roughness on Hydraulic Jump. Water Power & Dam Construction 32(Jan): 22–24.

    Google Scholar 

  • Gioia, G., Petrillo, A. & Vitale, A. (1976): Influenza dello stato cinematico nella sezione initiale del risalto idraulico sul profilo della vena liquida e sulla lunghezza del risalto. Atti dell’Istituto di Idraulica della Facoltà di Ingegneria di Ancona.

    Google Scholar 

  • Gioia, G., Petrillo, A., Sc Vitale, A. (1977): II profilo della vena liquida nel risalto idraulico. Idrotecnica 3(5): 179–197

    Google Scholar 

  • Gioia, G., Petrillo, A., Sc Vitale, A. (1977): II profilo della vena liquida nel risalto idraulico. Idrotecnica 3 (6): 227–235.

    Google Scholar 

  • Gioia, G., Petrillo, A. & Vitale, A. (1978): Le equazioni differenziali dei profili della vena liquida nel risalto idraulico ed i profili speri-mentali di altri ricercatori. Idrotecnica 4(2): 77–81.

    Google Scholar 

  • Gioia, G., Petrillo, A., Sc Vitale, A. (1979a): Indagine sperimentale sulle sollecitazioni al fondo del risalto idraulico. Idrotecnica 5(5): 183–194.

    Google Scholar 

  • Gioia, G., Perrillo, A. & Vitale, A. (1979b): Agitazione turbolenta nella sezione iniziale del risalto idraulico. Idrotecnica 5(6): 243–250.

    Google Scholar 

  • Govinda Rao, N.S. & Rajaratnam, N. (1961): On the Inception of Air Entrainment in Open Channel Flow. IX IAHR-Congress Dubrovnik: 9–12.

    Google Scholar 

  • Govinda Rao, N.S. &. Rajaratnam, N. (1963): The Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 89(HYl): 139–162.

    Google Scholar 

  • Govinda Rao, N.S. &. Rajaratnam, N. (1963): The Submerged Hydraulic Jump. Proc. ASCE, Discussions: 89(HY4): 277–279

    Google Scholar 

  • Govinda Rao, N.S. &. Rajaratnam, N. (1963): The Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 89(HY5): 147–152

    Google Scholar 

  • Govinda Rao, N.S. &. Rajaratnam, N. (1963): The Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 1964, 90(HY3): 313–316.

    Google Scholar 

  • Gumensky, D.B. (1949): Air Eintrainment in Fast Water Affects Design of Training Walls and Stilling Basins. Civil Engineering 19(12): 35–37; 93.

    Google Scholar 

  • Gupta, N.K. (1967): A Dimensionless Study of the Longitudinal Element and Profile of Hydraulic Jump. J. Institution of Engineers India 47(11): 1155–1165.

    Google Scholar 

  • Gupta, N.K. (1967): A Dimensionless Study of the Longitudinal Element and Profile of Hydraulic Jump. Discussion 48(9):1349–1356.

    Google Scholar 

  • Hager, W.H. (1987): Der Abfluss im U-Profil. Korrespondenz Abwasser 34(5): 468–482.

    Google Scholar 

  • Hager, W.H. (1988): B-Jump in Sloping Channel. J. Hydraulic Research 26(5): 539–558

    Article  Google Scholar 

  • Hager, W.H. (1988): B-Jump in Sloping Channel. J. Hydraulic Research 1990, 28(1): 105–119.

    MathSciNet  Google Scholar 

  • Hager, W.H. (1989a): Hydraulic Jump in U-Shaped Channel. Proc. ASCE, J. Hydraulic Engineering 115(5): 667–675.

    Article  Google Scholar 

  • Hager, W.H. (1989b): Wassersprung im geschlossenen Kanal. 3R-International 28(10): 674–679.

    Google Scholar 

  • Hager, W.H. (1990a): Geschichte des Wassersprungs. Schweizer Ingenieur und Architekt 108(25): 728–735.

    Google Scholar 

  • Hager, W.H. (1990b): Basiswerte der Kanalisations-Hydraulik. Gas-Wasser-Abwasser 70(11): 785–787.

    Google Scholar 

  • Hager, W.H. (1991): Classical Hydraulic Jump: Velocity Distribution. J. Hydraulic Research in preparation.

    Google Scholar 

  • Hager, W.H. & Bremen, R. (1989): Classical Hydraulic Jump: Sequent Depths Ratio. J. Hydraulic Research 27(5): 565–585.

    Article  Google Scholar 

  • Hager, W.H., Bremen, R. & Kawagoshi, N. (1990): Classical Hydraulic Jump: Length of Roller. J. Hydraulic Research 28(5): 591–608.

    Article  Google Scholar 

  • Hager, W.H. & Sinniger, R. (1985): Flow Characteristics in a Stilling Basin With an Abrupt Bottom Rise. J. Hydraulic Research 23(2): 101–113.

    Article  Google Scholar 

  • Hager, W.H. & Sinniger, R. (1985): Flow Characteristics in a Stilling Basin With an Abrupt Bottom Rise. Discussion 1986, 24(3): 207–215.

    Google Scholar 

  • Hager, W.H. & Wanoschek, R. (1987): Hydraulic Jump in Triangular Channel. J. Hydraulic Research 25(5): 549–564.

    Article  Google Scholar 

  • Hager, W.H. & Wanoschek, R. (1987): Hydraulic Jump in Triangular Channel. Discussions 1988, 26(4): 493–496

    Google Scholar 

  • Hager, W.H. & Wanoschek, R. (1987): Hydraulic Jump in Triangular Channel. Discussions, 1989, 27(1): 178–188.

    Google Scholar 

  • Hanko, Z. (1965): Energy Loss due to the Surface Roller at Hydraulic Jumps. XI IAHR-Congress Leningrad 1(40): 1–7.

    Google Scholar 

  • Hay, N. & White, P.R.S. (1975): Effect of Air Entrainment on the Performance of Stilling Basins. XVI IAHR-Congress Sao Paolo 2(B45): 363–372: 6: 275–276.

    Google Scholar 

  • Heinemann, E. (1979): Beitrag zur Vermeidung der Wirbelbildung vor Tauchwänden. Mitteilung 27, Inst. Wasserbau und Wasserwirtschaft, RWTH Aachen, ed. G. Rouvé, Aachen.

    Google Scholar 

  • Herbrand, K. (1969): Der Wechselsprung unter dem Einfluss der Luftbeimischung. Wasserwirtschaft 59(9): 254–260.

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures. Engineering News-Record 85(22): 1034–1040.

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1921, 86(3): 135: 1921

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1921, 86(4): 185–186

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1921, 86(6): 272

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1922, , 88(18): 749

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1922, 88(22): 923–924

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1922, 89(46): 855

    Google Scholar 

  • Hinds, J. (1920): The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures.Discussions 1925, 95(18): 728.

    Google Scholar 

  • Hjelmfelt, A.T. (1967): Flow in Elliptical Channels. Water Power 19(10): 429–431.

    Google Scholar 

  • Horsky, T. & Strauss, V. (1960): Zur Frage der Berechnung der Länge eines Wassersprunges. Vodohospodarsky Casopis SAV 8(4): 345–356 (including Summary in German).

    Google Scholar 

  • Horsky, T. & Strauss, V. (1961): Etude de la détermination de la longueur du ressaut hydraulique. Archiwum Hydrotechniki 8(1): 3–11.

    Google Scholar 

  • Horton, R.E. (1916): Standing-Wave Experiment. Engineering News 75(14): 658.

    Google Scholar 

  • Houk, I.E. (1934): Hydraulic Jump Phenomenon at Denver. The Engineer 157: 91–93; 98.

    Google Scholar 

  • Hoyt, J.W. & Sellin, R.H.J. (1989): Hydraulic Jump as <<Mixing Layer>>. Proc. ASCE, J. Hydraulic Engineering 115(12): 1607–1614.

    Article  Google Scholar 

  • Hurst, H.E. & Watt, D.A.F. (1925): The Similarity of Motion of Water Through Sluices and Through Scale Models: Experiments with Models of Sluices of the Assuan Dam. Minutes of Proceedings Inst. Civil Engineers, London 218: 72–180.

    Google Scholar 

  • Jaeger, C. (1949): Technische Hydraulik. Birkhäuser: Basel.

    MATH  Google Scholar 

  • Jones, J.H. (1928): The Standing Wave. Engineering 118(Aug.10): 172–173

    Google Scholar 

  • Jones, J.H. (1928): The Standing Wave. Engineering 118(Aug.l7): 193–194

    Google Scholar 

  • Jones, J.H. (1928): The Standing Wave. Engineering 118(Aug.24): 238–240

    Google Scholar 

  • Jones, J.H. (1928): The Standing Wave. Engineering 118(Aug.31): 267.

    Google Scholar 

  • Kalis, J. (1961): Diminution de la turbulence derrière le ressaut. IX IAHR Congress Dubrovnik: 43–49.

    Google Scholar 

  • Kawagoshi, N. & Hager, W.H. (1990a): B-Jump in Sloping Channel II. J. Hydraulic Research 28(4): 461–480.

    Article  Google Scholar 

  • Kawagoshi, N. & Hager, W.H. (1990b): Wave Type Flow at Abrupt Drops. J. Hydraulic Research 28(2): 235–252.

    Article  Google Scholar 

  • Kawanishi, M., Maruoka, H. & Shirasuna, T. (1982): Studies on Hydraulic Jump Type Dissipator Works of Trapezoidal Channels. Report of Central Research Institute of Electric Power Industry 57(6): 1–34 (In Japanese with English Abstract).

    Google Scholar 

  • Keir, G., Unny, T.E. & Hill, H.M. (1969): Pressure Fluctuations on Submerged Sluice Gate. Proc. ASCE, J. Hydraulics Division 95(HY6): 1781–1791.

    Google Scholar 

  • Keir, G., Unny, T.E. & Hill, H.M. (1969): Pressure Fluctuations on Submerged Sluice Gate. Discussions: 1970, 96(HY5): 1222

    Google Scholar 

  • Keir, G., Unny, T.E. & Hill, H.M. (1969): Pressure Fluctuations on Submerged Sluice Gate. Proc. ASCE, J. Hydraulics Division 1971, 97(HY2): 340.

    Google Scholar 

  • Kennison, K.R. (1916a): The Hydraulic Jump in Open-Channel Flow at High Velocity. Trans. ASCE 80: 338–420.

    Google Scholar 

  • Kennison, K.R. (1916b): Computing the Hydraulic Jumps. Engineering News 76(23): 1096.

    Google Scholar 

  • Keutner, C. (1932): Wasserabführungsvermögen von scharfkantigen und abgerundeten Planschützen. Bautechnik 10(21): 266–269

    Google Scholar 

  • Keutner, C. (1932): Wasserabführungsvermögen von scharfkantigen und abgerundeten Planschützen. Bautechnik 10(24): 303–305.

    Google Scholar 

  • Keutner, C. (1935): Die Strömungsvorgänge an unterströmten Schütztafeln mit scharfen und abgerundeten Unterkanten. Wasserkraft und Wasserwirtschaft 30(1): 5–8

    Google Scholar 

  • Keutner, C. (1935): Die Strömungsvorgänge an unterströmten Schütztafeln mit scharfen und abgerundeten Unterkanten. Wasserkraft und Wasserwirtschaft 30(2): 16–21.

    Google Scholar 

  • Kindsvater, C.E. (1944): The Hydraulic Jump in Sloping Channels. Trans. ASCE 109: 1107–1154.

    Google Scholar 

  • Kobus, H.E. (1985): An Introduction to Air-Water Flow in Hydraulics. Mitteilung 61, Institut für Wasserbau, Universität Stuttgart. Eigenverlag des Instituts: Stuttgart.

    Google Scholar 

  • Koch, A. & Carstanjen, M. (1926): Von der Bewegung des Wassers und den dabei auftretenden Kräften. Springer: Berlin.

    Google Scholar 

  • Kozeny, J. (1932a): Sind Wasserwalzen Energievernichter? Wasserwirtschaft 25(11): 143–144.

    Google Scholar 

  • Kozeny, J. (1932b): Wassersprung und Energieumwandlung. Wasserkraft und Wasserwirtschaft 27(1): 9–10.

    Google Scholar 

  • Kozeny, J. (1932b): Wassersprung und Energieumwandlung. Wasserkraft und Wasserwirtschaft Discussion 27(15): 177–178.

    Google Scholar 

  • Kozeny, J. (1932b): Wassersprung und Energieumwandlung. Wasserkraft und Wasserwirtschaft Errata 27(5): 60.

    Google Scholar 

  • Kozeny, J. (1932c): Wasserwalzen und Energieumwandlung. Wasserwirtschaft 25(24): 344–345.

    Google Scholar 

  • Kozeny, J. (1932c): Wasserwalzen und Energieumwandlung. Wasserwirtschaft Discussions 1933, 26(21): 285–287;

    Google Scholar 

  • Kozeny, J. (1932c): Wasserwalzen und Energieumwandlung. Wasserwirtschaft 26(22): 303–304.

    Google Scholar 

  • Lauffer, H. (1935): Wassersprung bei kleinen Sprunghöhen. Wasserwirtschaft und Technik 28(11/12): 137–140.

    Google Scholar 

  • Leutheusser, H.J. &. Alemu, S. (1979): Flow Separation Under Hydraulic Jump. J. Hydraulic Research 17(3): 193–206.

    Article  Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. (1972): Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 98(HY8): 1367–1385.

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. : Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division Discussions 1973, 99(HY3): 550–551

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. 1973: Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 99(HY4): 698–699?

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. 1973,Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 99(HY5): 859–860;

    Google Scholar 

  • Leutheusser, H.J. & Kartha, V.C. 1973,Effects of Inflow Condition on Hydraulic Jump. Proc. ASCE, J. Hydraulics Division, 99(HY11): 2130–2131.

    Google Scholar 

  • Leutheusser, H.J., Resch, F.J. & Alemu, S. (1973): Water Quality Enhancement Through Hydraulic Aeration. XV IAHR-Congress Istanboul 2(B22): 167–175.

    Google Scholar 

  • Leutheusser, H.J. &. Ward, C.A. (1975): Thermodynamic Aspects of Hydraulic Aeration. XVI IAHR Congress Sao Paolo 3(C59): 500–508.

    Google Scholar 

  • Levy, J.J. (1961): Effet dynamique d’un courant a haute turbulence sur des ouvrages hydrauliques et sur le lit des rivières. IX IAHR Congress Dubrovnik: 133–140.

    Google Scholar 

  • Levy, A.G. & Ellms, J.W. (1927): The Hydraulic Jump as a Mixing Device. J. American Water Works Association 17(1): 1–26.

    Google Scholar 

  • Lindquist, E. (1927): Anordninger for effektiv energiomvandling vid foten av överfallsdammar. Särtryck ur Skrifter utgivna med anledning av Kungl. Tekniska Högskolans. 100 — Ars Jubileum: Stockholm.

    Google Scholar 

  • Lindquist, E. (1933): Die Energieumwandlung an Wehren. I ICOLD Congress Stockholm 5: 103–113.

    Google Scholar 

  • Long, D., Steffler, P.M. & Rajaratnam, N. (1990): LDA Study of Flow Structure in Submerged Hydraulic Jump. J. Hydraulic Research 28(4): 437–460.

    Article  Google Scholar 

  • Lopardo, R.A., Chividini, M.F. & Berrilio, D.A. (1987): Effect of Hydraulic Jump Inflow Condition on the Decay of Turbulence in Stilling Basin. Int. Symp. New Technology in Model Testing in Hydraulic Research Pune (India) 1: 111–114.

    Google Scholar 

  • Lopardo, R.A., De Lio, J.C. & Vernet, G.F. (1982): Physical Modelling on Cavitation Tendency for Macroturbulence of Hydraulic Jump. Int. Conf. Hydraulic Modelling of Civil Engineering Structures Coventry (England) (C3):109–121.

    Google Scholar 

  • Lopardo, R.A. &. Henning, R.E. (1985): Experimental Advances on Pressure Fluctuations Beneath Hydraulic Jumps. XXI IAHR Congress Melbourne 3: 634–638.

    Google Scholar 

  • Macagno, E.O. (1967): Excerpts of “Expériences sur le remou et sur la propagation des ondes” by George Bidone. La Houille Blanche 22(1): 75–80.

    Google Scholar 

  • Madsen, P.A. & Svendsen, I.A.(1983): Turbulent Bores and Hydraulic Jumps. J. Fluid Mechanics 129: 1–25.

    Article  ADS  MATH  Google Scholar 

  • Mahmood, K. (1964): Effect of Apron Slope on Hydraulic Jump Performance. Thesis submitted in partial fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering. University of Washington, Washington.

    Google Scholar 

  • Malik, M. (1972): Die hydromechanischen Parameter und ihr Einfluss auf die charakteristischen Grössen des Wechselsprunges. Thesis, appeared also as Mitteilung 76, Institut für Wasserbau und Wasserwirtschaft, TU Berlin: Berlin.

    Google Scholar 

  • Mavis, F. T. (1946): Critical Flow in Circular Conduits Analyzed by Nomograph. Engineering News-Record 136: 361–362.

    Google Scholar 

  • McCorquodale, J.A. (1986): Hydraulic Jumps and Internal Flows. Chapter 6 of Encyclopedia of Fluid Mechanics 1, Flow Phenomena and Measurement: 122–173, ed. N.P. Cheremisinoff. Gulf Publishing Company: Houston.

    Google Scholar 

  • McCorquodale, J.A. & Khalifa, A. (1983): Internal Flow in Hydraulic Jumps. Proc. ASCE, J. Hydraulic Engineering 109(5): 684–701.

    Article  Google Scholar 

  • McCorquodale, J.A. & Khalifa, A. (1983): Internal Flow in Hydraulic Jumps. Proc. ASCE, J. Hydraulic Engineering Discussion 1984, 110(9): 1508–1509.

    Google Scholar 

  • Mehrotra, S.C. (1976): Length of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 102(HY7): 1027–1033.

    Google Scholar 

  • Mehrotra, S.C. (1976): Length of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division Discussions 1977, 103(HY3): 341–343;

    MathSciNet  Google Scholar 

  • Mehrotra, S.C. (1976): Length of Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 1977, 103(HY9): 1106–1107.

    Google Scholar 

  • Merriman, M. (1894): A Treatise on Hydraulics. John Wiley &. Sons: New York.

    Google Scholar 

  • Meyer, A.F. (1925): High-Velocity Discharge of Overfall Dams and Forms of Spillway Profile. Engineering News-Record 94(15): 597–599;

    Google Scholar 

  • Meyer, A.F. (1925): High-Velocity Discharge of Overfall Dams and Forms of Spillway Profile. Engineering News-Record 94(19): 780;

    Google Scholar 

  • Meyer, A.F. (1925): High-Velocity Discharge of Overfall Dams and Forms of Spillway Profile. Engineering News-Record 94(21): 866;

    Google Scholar 

  • Meyer, A.F. (1925): High-Velocity Discharge of Overfall Dams and Forms of Spillway Profile. Engineering News-Record 94(23): 945–946.

    Google Scholar 

  • Meyer-Peter, E. (1924): Neuere Berechnungsmethoden aus dem Gebiete der Hydraulik. Schweizerische Bauzeitung 84(1): 1–5;

    Google Scholar 

  • Meyer-Peter, E. (1924): Neuere Berechnungsmethoden aus dem Gebiete der Hydraulik. Schweizerische Bauzeitung 84(2): 15–18;

    Google Scholar 

  • Meyer-Peter, E. (1924): Neuere Berechnungsmethoden aus dem Gebiete der Hydraulik. Schweizerische Bauzeitung 84(4): 44.

    Google Scholar 

  • Mikhalev, M.A. & Hoang, T.A. (1976): Kinematic Characteristics of a Hydraulic Jump on a Sloping Apron. Hydrotechnical Constructions 7(12): 686–690.

    Article  Google Scholar 

  • Möller, M. (1894): Ungleichförmige Wasserbewegung. Zeitschrift Hannover. Ingenieur- und Architektenverein 40: 581–608.

    Google Scholar 

  • Mohed, M.B., Sharp, J.J. (1971): The Hydraulic Jump in Trapezoidal Channels. Water and Water Engineering 23(Jan): 8–11.

    Google Scholar 

  • Moore, W.L. (1943): Energy Loss at the Base of a Free Overfall. Trans. ASCE 108:1343–1392.

    Google Scholar 

  • Mura Hari, V. (1967): A Method to Determine Depth Ratios in Submerged Hydraulic Jump. Indian Journal of Power and River Valley Development 17(12): 31–32.

    Google Scholar 

  • Mura Hari, V. (1969): Submerged Hydraulic Jump in Circular Channels. Water Power 21(1): 24–25.

    Google Scholar 

  • Mura Hari, V. (1973): Plane Jet on Sloping Floors under Finite Submergence. Proc. ASCE, J. Hydraulics Division 99(HY9): 1449–1460;

    Google Scholar 

  • Mura Hari, V. (1973): Plane Jet on Sloping Floors under Finite Submergence. Proc. ASCE, J. Hydraulics Division 991974, 100(HYl): 257.

    Google Scholar 

  • Nagaratnam, S. & Murahari, V. (1968): Submerged Hydraulic Jump in Trapezoidal Channels. Water Power 20(10): 404–406.

    Google Scholar 

  • Nagaratnam, S. & Murahari, V. (1969): The Submerged Hydraulic Jump in Trapezoidal Channels. J. Irrigation and Power 27(1): 41–50.

    Google Scholar 

  • Naib, S.K.A. (1966): Photographic Method for Measuring Velocity Profiles in a Liquid Jet. The Engineer 221: 961–963;

    Google Scholar 

  • Naib, S.K.A. (1966): Photographic Method for Measuring Velocity Profiles in a Liquid Jet. The Engineer222: 236.

    Google Scholar 

  • Narasimhan, S. & Bhargava, V.P. (1976): Pressure Fluctuations in Submerged Jump. Proc. ASCE, J. Hydraulics Division 102(HY3): 339–350.

    Google Scholar 

  • Narasimhan, S. & Bhargava, V.P. (1976): Pressure Fluctuations in Submerged Jump. Proc. ASCE, J. Hydraulics Division Discussion 1976, 102(HY12): 1785–1787;

    Google Scholar 

  • Narasimhan, S. & Bhargava, V.P. (1976): Pressure Fluctuations in Submerged Jump. Proc. ASCE, J. Hydraulics Division 1977, 103(HY7): 810.

    Google Scholar 

  • Narayanan, R. (1975): Wall Jet Analogy to Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 101(HY3): 347–359.

    MathSciNet  Google Scholar 

  • Narayanan, R. (1975): Wall Jet Analogy to Hydraulic Jump. Proc. ASCE, J. Hydraulics Division Discussions 1975, 101(HY9): 1300–1301;

    Google Scholar 

  • Narayanan, R. (1975): Wall Jet Analogy to Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 1976, 102(HY3): 425.

    Google Scholar 

  • Narayanan, R. (1978): Pressure Fluctuations Beneath Submerged Jump. Proc. ASCE, J. Hydraulics Division 104(HY9): 1331–1342.

    Google Scholar 

  • Narayanan, R. (1978): Pressure Fluctuations Beneath Submerged Jump. Proc. ASCE, J. Hydraulics Division Discussions 1979, 105(HY7): 917–919;

    Google Scholar 

  • Narayanan, R. (1978): Pressure Fluctuations Beneath Submerged Jump. Proc. ASCE, J. Hydraulics Division 1980, 106(HY5): 938.

    Google Scholar 

  • Narayanan, R. (1980): Cavitation Induced by Turbulence in Stilling Basin. Proc. ASCE, J. Hydraulics Division 106(HY4):616–619.

    Google Scholar 

  • Narayanan, R. (1980): Cavitation Induced by Turbulence in Stilling Basin. Proc. ASCE, J. Hydraulics Division Discussion 107(HY2): 244–245;

    Google Scholar 

  • Narayanan, R. (1980): Cavitation Induced by Turbulence in Stilling Basin. Proc. ASCE, J. Hydraulics Division 107(HY10): 1271–1272.

    Google Scholar 

  • Narayanan, R. & Reynolds, A.J. (1968): Pressure Fluctuations in a Reattaching Flow. Proc. ASCE, J. Hydraulics Division 94(HY6): 1383–1398.

    Google Scholar 

  • Naudascher, E. (1988): Flow-Induced Loading and Vibration of Gates. Int. Symp. Hydraulics for High Dams Beijing: 1–18.Naudascher, E. (1991): Hydrodynamic Forces. IAHR Hydraulic Structures Design Manual 3. A.A. Balkema: Rotterdam.

    Google Scholar 

  • Nece, R.E. & Mahmood, K. (1976): Boundary Shear Stress as an Index of Hydraulic Jump Performance. Symp. Inland Waterways for Navigation, Flood Control and Water Diversions Fort Collins 2:978–992.

    Google Scholar 

  • Neumüller, M. (1957): Die Berechnung des Ausflusses unter Schützen mit besonderer Berücksichtigung des Ausflusses mit gestauter Deckwalze. Thesis TH Darmstadt, Darmstadt (Germany).

    Google Scholar 

  • Ohashi, K., Sakabe, I. & Aki, S. (1973): Design of Combined Hydraulic Jump and Ski-Jump Energy Dissipator of Flood Spillway. XIII ICOLD Congress Madrid Q.41, R.19: 311–333.

    Google Scholar 

  • Ohtsu, I. (1976a): Free Hydraulic Jump and Submerged Hydraulic Jump in Trapezoidal and Rectangular Channels. Trans. Japanese Society Civil Engineering 8: 122–125.

    Google Scholar 

  • Ohtsu, I. (1976b): Free Hydraulic Jump and Submerged Hydraulic Jump in Trapezoidal and Rectangular Channels. Proc. Japanese Society Civil Engineers 246(2): 57–72 (in Japanese).

    Article  Google Scholar 

  • Ohtsu, I., Yasuda, Y. & Awazu, S. (1990): Free and Submerged Hydraulic Jumps in Rectangular Channels. Report 35, Research Institute of Science and Technology, Nihon University: 1–50.

    Google Scholar 

  • Okada, A. & Aki, S. (1956): Experimental Studies of Hydraulic Jump on Reversed Slope Channel. J. Technical Laboratory Central Research Institute of Electric Power Industry (Tokio) 5(6): 161–174.

    Google Scholar 

  • Pattabhiramaiah, K.R. (1964): Studies on the Effect of Viscosity on the Performance of a Hydraulic Jump. Civil Engineering and Public Works Review 59(10): 1237–1239;

    Google Scholar 

  • Pattabhiramaiah, K.R. (1964): Studies on the Effect of Viscosity on the Performance of a Hydraulic Jump. Civil Engineering and Public Works Review 59(12): 1507, 1513.

    Google Scholar 

  • Pavlov, B.A. (1987): Length of a Direct Hydraulic Jump. Hydraulical Construction 21(4): 198.

    Article  Google Scholar 

  • Peterka, A.J. (1958): Hydraulic Design of Stilling Basins and Energy Diss ipators. US Department Interior, Bureau of Reclamation, Engineering Monograph, 25: Denver, Col. (Appeared also as 7th Printing in 1983).

    Google Scholar 

  • Pethick, R.W. & Harrision, A.J.M. (1981): The Theoretical Treatment of the Hydraulics of Rectangular Flap Gates. XIX IAHR Congress New Delhi B(c)12: 247–254.

    Google Scholar 

  • Pietrkowski, J. (1932): Beitrag zur Kenntnis des Wechselsprunges. Wasserwirtschaft 25(25): 356–358;

    Google Scholar 

  • Pietrkowski, J. (1932): Beitrag zur Kenntnis des Wechselsprunges. Wasserwirtschaft 25(26): 370–372;

    Google Scholar 

  • Pietrkowski, J. (1932): Beitrag zur Kenntnis des Wechselsprunges. Wasserwirtschaft 25(27): 377–379;

    Google Scholar 

  • Pietrkowski, J. (1932): Beitrag zur Kenntnis des Wechselsprunges. Wasserwirtschaft 25(28): 397–400.

    Google Scholar 

  • Posey, C.J. & Hsing, P.S. (1938): Hydraulic Jump in Trapezoidal Channel. Engineering News-Record 121(Dec.22): 797–798.

    Google Scholar 

  • Rajaratnam, N. (1961a): An Experimental Study of Air Entrainment Characteristics of Hydraulic Jump. J. Institution of Engineers (India) 42: 247–273.

    Google Scholar 

  • Rajaratnam, N. (1961b): Discussion to “Aerated Flow in Open Channels” by the Task Committee on Air Entrainment in Open Channels. Proc. ASCE, J. Hydraulics Division 87(HY6): 224–230.

    Google Scholar 

  • Rajaratnam, N. (1961c): The Pre-Entrained Jump. Civil Engineering and Public Works Review 56(663): 1349–1351;

    Google Scholar 

  • Rajaratnam, N. (1961c): The Pre-Entrained Jump. Civil Engineering and Public Works Review 56(664): 1469–1471.

    Google Scholar 

  • Rajaratnam, N. (1962a): Recent Contributions to the Hydraulic Jump from the Indian Institute of Science, Bangalore. Vishwakarma (Mar): 25–32.

    Google Scholar 

  • Rajaratnam, N. (1962b): Effect of Air Entrainment on Stilling Basin Performance. Central Board of Irrigation, J. Irrigation and Power (India) 19(May): 334–343.

    Google Scholar 

  • Rajaratnam, N. (1962c): Profile Equation for the Hydraulic Jump. Water Power 14(Aug): 324–327.

    Google Scholar 

  • Rajaratnam, N. (1962c): Profile Equation for the Hydraulic Jump. Discussion 1962, 14(Nov): 424.

    Google Scholar 

  • Rajaratnam, N. (1963): Discussion to “General Solution of the Hydraulic Jump in Sloping Channels” by P.A. Argyropoulos. Proc. ASCE, J. Hydraulics Division 89(HY1): 258–261.

    Google Scholar 

  • Rajaratnam, N. (1965a): The Hydraulic Jump as a Wall Jet. Proc. ASCE, J. Hydraulics Division 91(HY5): 107–132.

    Google Scholar 

  • Rajaratnam, N. (1965a): The Hydraulic Jump as a Wall Jet. Discussion 1966,

    Google Scholar 

  • Rajaratnam, N.: The Hydraulic Jump as a Wall Jet. Proc. ASCE, J. Hydraulics Division 92(HY3): 110–123; 1967,

    Google Scholar 

  • Rajaratnam, N.: The Hydraulic Jump as a Wall Jet. Proc. ASCE, J. Hydraulics Division 93(HY1): 74–76.

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 9(KHY4): 71–96.

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Discussions: 1966,

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 92(HY1): 146–155;

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 92(HY2): 420–421;

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 92(HY4): 154–156;

    Google Scholar 

  • Rajaratnam, N. (1965b): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 92(HY6): 207;

    Google Scholar 

  • Rajaratnam, N. (1967): Submerged Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 93(HY3): 179.

    Google Scholar 

  • Rajaratnam, N. (1965c): Experiments on Submerged Jumps in a Triangular Channel. Civil Engineering and Public Works Review 60(7): 1039–1040.

    Google Scholar 

  • Rajaratnam, N. (1966): The Hydraulic Jump in Sloping Channels. J. Irrigation and Power (India) 23(Apr): 137–149.

    Google Scholar 

  • Rajaratnam, N. (1966): The Hydraulic Jump in Sloping Channels. Discussion 1967, 24(Jul): 285–293.

    Google Scholar 

  • Rajaratnam, N. (1967): Hydraulic Jumps. Advances in Hydroscience 4:197–280,

    Google Scholar 

  • Rajaratnam, N. (1967): Hydraulic Jumps. ed. V.T. Chow, Academic Press: New York.

    Google Scholar 

  • Rajaratnam, N. & Murahari, V. (1974): Flow Characteristics of Sloping Channel Jumps. Proc. ASCE, J. Hydraulics Division 100(HY6): 731–740.

    Google Scholar 

  • Rajaratnam, N. & Murahari, V. (1974): Flow Characteristics of Sloping Channel Jumps. Discussions 1975,

    Google Scholar 

  • Rajaratnam, N. & Murahari, V. (1974): Flow Characteristics of Sloping Channel Jumps. 101(HY4): 419–420;

    Google Scholar 

  • Rajaratnam, N. & Murahari, V. (1975): Flow Characteristics of Sloping Channel Jumps. 101(HY7): 1016–1017?

    Google Scholar 

  • Rajaratnam, N. & Murahari, V. (1976): Flow Characteristics of Sloping Channel Jumps. 102(HY5): 681.

    Google Scholar 

  • Rajaratnam, N. & Powley, R.L. (1990): Hydraulic Jumps in Two-Layer Flows. Proc. Institution Civil Engineering 89: 127–142.

    Article  Google Scholar 

  • Rajaratnam, N. & Subramanya, K. (1967a): Flow Immediately Below Submerged Sluice Gate. Proc. ASCE, J. Hydraulics Division 93(HY4): 57–77. Discussions 1968, 94(HY1): 340–341; 94(HY2): 601–603; 94(HY6): 1528.

    Google Scholar 

  • Rajaratnam, N. & Subramanya, K. (1967b): Flow Equation for the Sluice Gate. Proc. ASCE, J. Irrigation and Drainage Division 93(IR3): 167–186.

    Google Scholar 

  • Rajaratnam, N. & Subramanya, K. (1968): Profile of the Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 94(HY3): 663–673. Discussions 1969, 95(HY1): 546–557; 1969, 95(HY2): 725–727; 1970, 96(HY2): 579–580.

    Google Scholar 

  • Rajaratnam, N. & Subramanya, K. (1969): Practical Problems of Sluice-Gate Flow. Water Power 21(3): 112–115.

    Google Scholar 

  • Randolph, R.R. (1938): Hydraulic Tests on the Spillway of the Madden Dam. Trans. ASCE 103: 1080–1132.

    Google Scholar 

  • Rao, N.S.L. & Kobus, H.E. (1975): Characteristics of Self-Aerated Free Surface Flows. Water and Waste Water — Current Research and Practise, Vol.10, Erich Schmidt Verlag: Berlin — Bielefeld — München.

    Google Scholar 

  • Rao, S.G. & Ramaprasad (1966): Application of Momentum Equation in the Hydraulic Jump. La Houille Blanche 21(4): 451–453.

    Google Scholar 

  • Razvan, E. (1967): Résultats de l’étude du mouvement macroturbulent en aval du ressaut hydraulique. XII IAHR-Congress Fort Collins 2(B.4): 26–35.

    Google Scholar 

  • Rehbock, T. (1933): Die Ausbildung der Sturzbetten bei Ueberf allwehren und Talsperren. Commission Internationale des Grands Barrages, I ICOLD Congress Stockholm 5:47–51.

    Google Scholar 

  • Resch, F. (1970): Hot-Film Turbulence Measurements in Water Flow. Proc. ASCE, J. Hydraulics Division 96(HY3): 787–800. Discussion 1971, 97(HYl): 194–196: 1971, 97(HY8): 1238–1239.

    Google Scholar 

  • Resch, F.J. & Leutheusser, H.-J. (1971): Mesures de turbulence dans le ressaut hydraulique. La Houille Blanche 26(1): 17–31.

    Article  Google Scholar 

  • Resch, F.J. & Leutheusser, H.-J. (1972a): Le ressaut hydraulique: mesures de turbulence dans la region diphasique. La Houille Blanche 27(4): 279–293.

    Article  Google Scholar 

  • Resch, F.J. & Leutheusser, H.-J. (1972b): Mesures des tensions de Reynolds dans le ressaut hydraulique. J. Hydraulic Research 10(4): 409–429.

    Article  Google Scholar 

  • Resch, F.J., Leutheusser, H.-J. ScAlemu, S. (1974): Bubbly Two-Phase Flow in Hydraulic Jump. Proc. ASCE, J. Hydraulics Division 100(HYl): 137–149.

    Google Scholar 

  • Resch, F.J., Leutheusser, H.-J. & Coantic, M. (1976): Etude de la structure cinématique et dynamique du ressaut hydraulique. J. Hydraulic Research 14(4): 293–319.

    Article  Google Scholar 

  • Riegel, R.M. & Beebe, J.C. (1917): The Hydraulic Jump as a Means of Dissipating Energy. Miami Conservancy District, Technical Reports Part III: 60–111. Dayton (Ohio).

    Google Scholar 

  • Rouse, H. (1934): On the Use of Dimensionless Numbers. Civil Engineering 4(11): 563–568.

    Google Scholar 

  • Rouse, H. (1970): Work-Energy Equation for the Streamline. Proc. ASCE, J. Hydraulics Division 96(HY5): 1179–1190. Discussions 1970, 96(HY1): 2159–2163? 1970, 96(HY12): 2668–2674; 1971, 97(HY7): 1138.

    Google Scholar 

  • Rouse, H. & Jezdinsky, V. (1965): Cavitation and Energy Dissipation in Conduit Expansions. XI IAHR Congress Leningrad 1(28): 1–7.

    Google Scholar 

  • Rouse, H. & Jezdinsky, V. (1966): Fluctuations of Pressure in Conduit Expansions. Proc. ASCE, J. Hydraulics Division 92(HY3): 1–12.

    Google Scholar 

  • Rouse, H., Siao T.T. & Nagaratnam, S. (1959): Turbulence Characteristics of the Hydraulic Jump. Trans. ASCE 124: 926–966.

    Google Scholar 

  • Rumyantsev, I.S., Maslov, A.B. & Yusupov, D.A. (1986): Turbulence Intensity in Transition Sections of Pools in Trapezoidal Canals. Hydrotechnical Construction 20(12): 723–725.

    Article  Google Scholar 

  • Safranez, K. (1927): Wechselsprung und die Energievernichtung des Wassers. Bauingenieur 8(49): 898–905.

    Google Scholar 

  • Safranez, K. (1929): Untersuchungen über den Wechselsprung. Bauingenieur 10(37): 649–651; 10(38): 668–677.

    Google Scholar 

  • Safranez, K. (1930): Energieverzehrung der Deckwalze. Bauingenieur 11(20): 352–355.

    Google Scholar 

  • Safranez, K. (1933a): Länge des Wechselsprunges. Wasserkraft und Wasserwirtschaft 28(24): 277–282.

    Google Scholar 

  • Safranez, K. (1933b): Wassersprung in geneigten, sich verbreiternden Gerinnen. Bauingenieur 14(41/42): 521–526.

    Google Scholar 

  • Sandover, J.A. & Holmes, P. (1962): The Hydraulic Jump in Trapezoidal Channels. Water Power 14(Nov): 445–449.

    Google Scholar 

  • Sarma, K.V.N. & Newnham, D.A. (1973): Surface Profiles of Hydraulic Jump for Froude Numbers less than Four. Water Power 25(Apr): 139–142.

    Google Scholar 

  • Savci, M.E. (1973): Longitudinal Dispersion of Soluble Matter in Submerged Jumps. XV IAHR Congress Istanbul BIO: 1–8.

    Google Scholar 

  • Schäfer, A. (1930): Der Ausflussstrahl im Unterwasser. Wasserkraft und Wasserwirtschaft 25(1): 1–5. Discussion 25(7): 81.

    Google Scholar 

  • Schiebe, F.R. & Bowers, C.E. (1971): Boundary Pressure Fluctuations due to Macroturbulence in Hydraulic Jumps. Proc. Symp. Turbulence in Liquids: 134–139. University of Missouri-Rolla, USA.

    Google Scholar 

  • Schmidt, M. (1957): Der vollkommene und unvollkommene Ausfluss unter Schützen. Bautechnik 34(8): 301–303; 35(4): 159–160.

    Google Scholar 

  • Schoklitsch, A. (1932): Ueber die Energievernichtung durch Walzen. Wasserwirtschaft 25(16/17): 225–226.

    Google Scholar 

  • Schoklitsch, A. (1935): Stauraumverlandung und Kolkabwehr. Julius Springer: Wien.

    Google Scholar 

  • Schröder, R. (1954): Studien zum Thema Wechselsprung. Wasserwirtschaft 44(11): 296–300.

    Google Scholar 

  • Schröder, R. (1962): Die Bewegungsgleichungen für turbulente Strömungen als Kontinuitätsbedingungen. Bautechnik 41(10): 329–331.

    Google Scholar 

  • Schröder, R. (1963): Die turbulente Strömung im freien Wechselsprung. Habilitationsschrift, Mitteilung 59, Institut für Wasserbau und Wasserwirtschaft, TU Berlin, ed. H. Press: Berlin.

    Google Scholar 

  • Schröder, R. (1964): Energiedissipation und Turbulenzmechanismus im freien Wechselsprung. Wasserwirtschaft 54: 133–137.

    Google Scholar 

  • Schwarz, W.H. & Cosart, W.P. (1961): The Two-Dimensional Turbulent Wall Jet. J. Fluid Mechanics 10(4): 481–495.

    Article  ADS  MATH  Google Scholar 

  • Scobey, F.C. (1939): Notes on the Hydraulic Jump. Civil Engineering 9(8): 467–469. Discussion 9(9): 565.

    Google Scholar 

  • Sene, K.J., Thomas, N.H. Scgoldring, B.T. (1989): Planar Plunge-Zone Flow Patterns and Entrained Bubble Transport. J. Hydraulic Research 27(3): 363–383.

    Article  Google Scholar 

  • Serre, M. (1950): Transition from Free Surface to Flow Under Pressure in Pipes. La Houille Blanche 5(2): 65–67.

    Article  Google Scholar 

  • Sharp, J.J. (1970): Discussion on “Graphical Solution of Hydraulic Jump” by R.W. Jeppson. Proc. ASCE, J. Hydraulics Division 96(HY8): 1767–1770.

    Google Scholar 

  • Sharp, J.J. & Barr, D.I.H. (1969): Non-Dimensional Solution to Open Channel Flow. The Engineer 227: 446–449.

    Google Scholar 

  • Sharp, J.J. & Kane, D. (1969): Non-Dimensional Solution to Open Channel Flow Problems. The Engineer 227: 484–486.

    Google Scholar 

  • Silvester, R. (1964): Hydraulic Jump in all Shapes of Horizontal Channels. Proc. ASCE, J. Hydraulics Division 90(HYl); 23–55. Discussions 1964, 90(HY4): 339–358; 1964, 90(HY5): 177–186; 1964, 90(HY6): 265–268.

    Google Scholar 

  • Smetana, J. (1933): Etude expérimentale du ressaut d’exhaussement. Bulletin 5 des Instituts Masaryk de Recherches Hydrologiques et Hydrotechniques: Prague (In Czech with summary in French).

    Google Scholar 

  • Smetana, J. (1934): Etude expérimentale du ressaut noyé. Inst. Hydrologique et Hydrotechnique T.G. Masaryk (Prague), Travaux et Etudes 13: 1–40 (in Czech with French Summary). For a Summary see also L’Energia Elettrica 24(10): 829–835.

    Google Scholar 

  • Smetana, J. (1935): Modern Types of Movable Dams. XVI International Congress of Navigation Brussels, Section 1, 2(51): 1–19.

    Google Scholar 

  • Smith, C.D. (1959): The Effect of Sidewall Height on the Hydraulic Jump on a Continuously Sloping Chute. VIII IAHR-Congress Montreal 2-F: 1–16.

    Google Scholar 

  • Spoljaric, A. (1984): Dynamic Characteristics of the Load on the Bottom Plate Under Hydraulic Jump. Hydrosoft ’84 Protoroz (Yugoslavia): 129–141. Elsevier: Amsterdam.

    Google Scholar 

  • Stevens, J.C. (1925): Determining the Energy Lost in the Hydraulic Jump. Engineering News-Record 94(23): 928–929. Discussions 1927, 98(3): 126; 1927, 98(13): 538–539.

    Google Scholar 

  • Stevens, J.C. (1933): The Hydraulic Jump in Standard Conduits. Civil Engineering 3(10): 565–567; 4(1): 42; 4(5): 270.

    MathSciNet  Google Scholar 

  • Suryavanshi, B.D., Vaidya, M.P. & Choudhury, B. (1973): Use of Chute Blocks in Stilling Basin Assessment. 11 ICOLD Congress Madrid Q.41, R.56: 1011–1036.

    Google Scholar 

  • Svendsen, I.A. & Madsen, P.A. (1984): A Turbulent Bore on a Beach. J. Fluid Mechanics 148:73–96.

    Article  ADS  MATH  Google Scholar 

  • Swamee, P.K. (1970): Sequent Depths in Prismatic Open Channels. J. Irrigation and Power (India) 27(1): 45–61. Discussion 1970, 27(4): 438–440.

    Google Scholar 

  • Swamee, P.K. & Prasad, K. (1977): Direct Equations for Hydraulic Jump Elements. J. Irrigation and Power (India) 34(4): 503–506.

    Google Scholar 

  • Toso, J.W. & Bowers, C.E. (1985): Data Acquisition and Analysis of Pressure Fluctuations in Hydraulic Jumps. Hydraulics and Hydrology in the Small Computer Age Lake Buena Vista (Fla) 2: 1184–1189, ed. W.R. Waldrop. ASCE: New York.

    Google Scholar 

  • Toso, J.W. & Bowers, C.E. (1987): Design Considerations for Hydraulic Jump Structures. Hydraulic Engineering: 110–115. National Conference ASCE Williamsburg (Va), ed. R.M. Ragan. ASCE: New York.

    Google Scholar 

  • Toso, J.W. & Bowers, C.E. (1988): Extreme Pressures in Hydraulic Jump Stilling Basins. Proc. ASCE, J. Hydraulic Engineering 114(8):829–843.

    Article  Google Scholar 

  • Tsuchiya, Y. (1963): Basic Studies on the Criterion for Scour Resulting from Flows Downstream of an Outlet. Disaster Prevention Research Institute, Kyoto University, Bulletin 63: 2–68.

    Google Scholar 

  • United States Bureau of Reclamation (1948): Model Studies of Imperial Dam, Desilting Works, Ail-American Canal Structures. U.S. Dept. Interior, Boulder Canyon Project — Final Report, Part VI, Hydraulic Investigations, Bulletin 4. Washington D.C

    Google Scholar 

  • Unny, T.E. (1961): Anwendung von Impuls- und Energiesatz bei der Berechnung des Wechselsprunges. Wasserwirtschaft — Wassertechnik 11(1): 32–35.

    Google Scholar 

  • Unny, T.E. & Petrikat, K. (1966). Discussion to Experiences with Flow-Induced Vibrations, by W.P. Simmons. Proc. ASCE, J. Hydraulics Division 92(HY2): 432–439.

    Google Scholar 

  • Van Beesten, C. (1962): Hydraulic Design of Weirs. J. Institution Water Engineers 16(5): 369–408.

    Google Scholar 

  • Vasilev, O.F. & Bukreyev, V.I. (1967): Statistical Characteristics of Pressure Fluctuations in the Region of Hydraulic Jump. XII IAHR Congress Fort Collins 2(B1): 1–8.

    Google Scholar 

  • Viparelli, M. (1988): Dissipazioni di energia nelle correnti. Idrotecnica 14(3): 229–246.

    Google Scholar 

  • Voinich-Syanozhenentskii, T.G. & Zhulaeva, E.R. (1988): Dissipation of Residual Energy Behind a Bottom Hydraulic Jump. Hydrotechnical Construction 22(4): 225–229.

    Article  Google Scholar 

  • Wanoschek, R. (1989): Trapezoidal Stilling Basin. XXIII IAHR Congress Ottawa A: 223–230.

    Google Scholar 

  • Wanoschek, R. & Hager, W.H. (1989a): Hydraulic Jump in Trapezoidal Channel. J. Hydraulic Research 27(3): 429–446.

    Article  Google Scholar 

  • Wanoschek, R. & Hager, W.H. (1989b): Trapez-Tosbecken. Oesterreichische Wasserwirtschaft 41(11/12): 313–319.

    Google Scholar 

  • Wanoschek, R. &. Hager, W.H. (1991): Massstabseffekte am Beispiel des Trapez-Wassersprunges. Wasser und Boden 43(10).

    Google Scholar 

  • Wielogorski, J.W. & Wilson, E.H. (1970): Non-D imens ional Profile Area Coefficients for Hydraulic Jump in Sloping Rectangular Channels. Water Power 22(Apr): 144–150.

    Google Scholar 

  • Wilson, E.H. (1967): Location of the Hydraulic Jump in Open Rectangular Channels. The Engineer 223: 145–149.

    Google Scholar 

  • Wilson, E.H. & Turner, A.A. (1972): Boundary Layer Effects on Hydraulic Jump Location. Proc. ASCE, J. Hydraulics Division 98(HY7): 1127–1142. Discussions 1973, 99(HY7): 1170–1173; 1974, 100(HY2): 320.

    Google Scholar 

  • Winkel, R. (1926): Hydromechanische Energie-Umwandlung. Bautechnik 4(31): 454–455.

    Google Scholar 

  • Wisner, P. (1967): Sur les fluctuations de la pression au fond des ressauts hydrauliques en conduite et en écoulement à niveau libre. XII IAHR Congress Fort Collins 2(B6):1–8.

    Google Scholar 

  • Woycicki, K. (1931): Wassersprung, Deckwalze und Ausfluss unter einer Schütze. Dissertation ETH 639. Verlag der Polnischen Akademie der Technischen Wissenschaften: Warschau.

    Google Scholar 

  • Zirong, L. & Yuchuan, X. (1987): Turbulence Characteristics Downstream of the Hydraulic Jump. XXII IAHR Congress Lausanne B: 109–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hager, W.H. (1992). Introduction. In: Energy Dissipators and Hydraulic Jump. Water Science and Technology Library, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8048-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8048-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4106-7

  • Online ISBN: 978-94-015-8048-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics