Skip to main content

Case Studies

  • Chapter
  • 833 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 7))

Abstract

In this chapter we discuss the results of specific composite structural problems that are analyzed using the theories and computational models developed in the previous chapters. The objective of these case studies is to bring out certain physical features that influence design of composite structures. While the conclusions drawn in each case apply to that particular problem, they are valuable in the design of similar laminates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, S. D., Ochoa, O. O., and Owens, S., “Influence of Manufacturing Defects on Fatigue Life of Composite Bolted Joints,” Recent Advances in Structural Mechanics, PVP Vol. 225, pp. 51–56, American Society of Mechanical Engineers, New York (1991).

    Google Scholar 

  2. De Jong, T., “Stresses Around Pin Loaded Holes in Elastically Orthotropic or Isotropic Plates,” Journal of Composite Materials, 11 (7), pp. 313–331 (1977).

    Article  ADS  Google Scholar 

  3. Matthews, F. L., Wong, C. M., and Chryssafitis, S., “Stress Distribution Around a Single Bolt in Fibre Reinforced Plastic,” Composites, 13 (3), pp. 316–322 (1982).

    Article  Google Scholar 

  4. Algor SD22SC Composite Element Reference Manual, Algor Interactive Systems, Inc., Section IV.15, (1988).

    Google Scholar 

  5. Cheng, Y. F., “Elastic Properties and Stress Concentrations at a Hole in Some Composite Laminates,” Fibre Science and Technology, 8, pp. 145–163 (1975).

    Article  Google Scholar 

  6. Shastry, B. P. and Rao, G. V., “Effect of Fibre Orientation on Stress Concentration in a Unidirectional Tensile Laminate of Finite Width with a Central Circular Hole,” Fibre Science and Technology, 10, pp. 151–154 (1977).

    Article  Google Scholar 

  7. Tan, S. C., “Notched Strength Prediction and Design of Laminated Composites Under In-Plane Loadings,” Journal of Composite Materials, 21, pp. 750–780 (1987).

    Article  ADS  Google Scholar 

  8. Tan, S. C., “Laminated Composite Containing an Elliptical Opening. I. Approximate Stress Analyses and Fracture Models,” Journal of Composite Materials, 21, pp. 925–948 (1987).

    Article  ADS  Google Scholar 

  9. Tan, S. C., “Laminated Composites Containing an Elliptical Opening. II. Experiment and Model Verification,” Journal of Composite Materials, 21, pp. 949–968 (1987).

    Article  ADS  Google Scholar 

  10. Lin, J. and Ueng, C. E. S., “Stress Concentrations in Orthotropic Laminates Containing Two Elliptical Holes,” Composite Structures 4, I. H. Marshall (ed.), Elsevier Applied Science, London, Chapter 2, pp. 419–430 (1984).

    Google Scholar 

  11. Fan, W. and Wu, J., “Stress Concentration of a Laminate Weakened by Multiple Holes,” Composite Structures, 10, pp. 303–319 (1988).

    Article  Google Scholar 

  12. Walsh, T. J. and Ochoa, O. O., “Characterization of Stiffened Panels with Cutouts,” Proc. of 3rd Int. Conf on Computational Engineering Science, Melbourne, Australia, pp. 776–771, August 11–16 (1991).

    Google Scholar 

  13. Walsh, T. J., “Cutouts in Composites,” M. S. Thesis, Texas A&M University, College Station, TX, May 1991.

    Google Scholar 

  14. “PATRAN Plus User Manual,” PDA Engineering — PATRAN Division, Release 2.3 (1988).

    Google Scholar 

  15. “ABAQUS User’s Manual,” Hibbet, Karlsson, & Sorensen, Inc. Version 4.7 (1988).

    Google Scholar 

  16. Buckly, J. D., “Carbon-Carbon Composites, An Overview,” Ceramic Bulletin, 67 (2), pp. 364–368 (1988).

    Google Scholar 

  17. Avery, W. B., and Herakovich, C. T., “A Study of the Mechanical Behavior of a 2D Carbon-Carbon Composite,” CCMS-87–13, Center for Composite Materials and Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA, August 1987.

    Google Scholar 

  18. Ochoa, O. O., Aikens, Q. Y., and Engblom, J. J., “An Integrated Numerical and Statistical Model fro Woven 2D Carbon-Carbon Composites,” The Mechanics of Composites at Elevated and Cryogenic Temperatures, S. N. Singhal, W. F. Jones, and C. T. Herakovich (eds.), AMD Vol. 118, The American Society of Mechanical Engineers, New York, pp. 157–170 (1991).

    Google Scholar 

  19. Ochoa, O. O., Aikens, Q. Y., and Engblom, J. J., “Thermomechanical Response Characterization of High Temperature Structures,” Report No. RF6386, Texas A&M University, College Station, TX, March 1991.

    Google Scholar 

  20. Ochoa, O. O., “Efficient Numerical Models to Emulate Inherent Defects in Brittle Composites,” Damage and Oxidation Protection in High Temperature Composites, Haritos, G. and Ochoa, O. O. feds.), AD Vol. 25–1, The American Society of Mechanical Engineers, New York, pp. 147–153 (1991).

    Google Scholar 

  21. Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, San Francisco, California: Holden-Day (1963).

    Google Scholar 

  22. Ross, G. R. and Ochoa, O. O., “Environmental Effects on Unsymmetric Composite Laminates,” Journal of Thermoplastic Composites, 4, pp. 266–284 (1991).

    Article  Google Scholar 

  23. Chan, W. S. and O. O. Ochoa, “An Integrated Finite Element Model of Edge-delamination Analysis for Laminates due to Tension, Bending, and Torsion Loads,” AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conference, April 6–8, 1987, Monterey, CA, pp. 27–35 (1987).

    Google Scholar 

  24. Turvey, G. J., “An Initial Flexural Failure Analysis of Symmetrically Laminated Cross-ply Rectangular Plates,” Journal of Solids and Structures, 16 (5), pp. 451–63 (1980).

    Article  MATH  Google Scholar 

  25. Turvey, G. J., “Flexural Failure Analysis of Angle-Ply Laminates of GFRP and CFRP,” Journal of Strain Analysis, 15(1), pp. 43–49 (1980).

    Article  ADS  Google Scholar 

  26. Turvey, G. J., “A Study of the Onset of Flexural Failure in Cross-Ply Laminated Strips,” Fibre Science and Technology, 13(5), pp. 325–336 (1980).

    Article  Google Scholar 

  27. Turvey, G. J., “Initial Flexural Failure of Square, Simply supported, Angle-Ply Pates,” Fibre Science and Technology, 15(1), pp. 47–63 (1981).

    Article  ADS  Google Scholar 

  28. Turvey, G. J., “Uniformly Loaded, Antisymmetric Cross-Ply laminated, Rectangular Plates: an Initial Flexural Failure Analysis,” Fibre Science and Technology, 15 (1), pp. 1–10 (1982).

    Article  Google Scholar 

  29. Turvey, G. J., “Effects of Shear Deformation on the Onset of Flexural Failure in Symmetric Cross-Ply Laminated Rectangular Plates,” Composite Structures 4, I. H. Marshall (ed.), Elsevier Applied Science, London, Chapter 11, 141–146 (1987).

    Chapter  Google Scholar 

  30. Reddy, J. N., “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, 51 (4), pp. 745–52 (1984).

    Article  ADS  MATH  Google Scholar 

  31. Reddy, J. N., and Pandey, A. J., “A First-Ply Failure Analysis of Composite Laminates,” Computers and Structures, 25 (3), pp. 371–393 (1987).

    Article  MATH  Google Scholar 

  32. Turvey, G. J., and Osman, M. Y., “Exact and approximate linear and nonlinear initial failure analysis of laminate mindlin plates in flexure,” Composite Structures 5, I. H. Marshall (ed.), Elsevier Applied Science, London, Chapter 4, pp. 133–171 (1989).

    Google Scholar 

  33. Reddy, Y. S. N. and Reddy, J. N., “Linear and Non-Linear Failure Analysis of Composite Laminates with Transverse Shear,” Composites Science and Technology, 44, pp. 227–255 (1992).

    Article  Google Scholar 

  34. Reddy, J. N., “A Penalty Plate-Bending Element for the Analysis of Laminated Anisotropic Composite Plates,” International Journal for Numerical Methods in Engineering, 15, pp. 1187–1206 (1980).

    Article  ADS  MATH  Google Scholar 

  35. Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John Wiley, New York, p. 389 (1984).

    MATH  Google Scholar 

  36. Reddy, J. N., “Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains,” Recent Advances in Non-Linear Computational Mechanics, E. Hinton, D. R. J. Owen and C. Taylor (eds.), pp. 155–202 (1982).

    Google Scholar 

  37. Reddy, J. N., “Geometrically Nonlinear Transient Analysis of Laminated Composite Plates,” AIAA Journal, 21 (4), pp. 621–629 (1983).

    Article  ADS  MATH  Google Scholar 

  38. Starnes, J. H., Jr., and Rouse, M., “Postbuckling and Failure Characteristics of Selected Flat Rectangular Graphite-Epoxy Plates Loaded in Compression,” AIAA Paper No. 81–0543 (1981).

    Google Scholar 

  39. Engelstad, S. P., Reddy, J. N. and N. F. Knight, Jr., “Postbuckling Response and Failure Prediction of Flat Rectangular Grpahite-Epoxy Plates Loaded in Axial Compression,” AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials Conference, April 8–10, 1991, Baltimore, MD, Paper No. AIAA-91–0910-CP.

    Google Scholar 

  40. Chao, W. C., and Reddy, J. N., “Analysis of Laminated Composite Shells Using a Degenerated 3-D Element,” International Journal for Numerical Methods in Engineering, 20, pp. 1991–2007 (1984).

    Article  ADS  MATH  Google Scholar 

  41. Engelstad, S. P., Knight, Jr., N. F., and Reddy, J. N., “Interlaminar Shear Stress Effects on the Postbuckling Response of Graphite-Epoxy Panels,” NASA TM-102626 (1990); also to appear in AIAA Journal.

    Google Scholar 

  42. Hashin, Z., “Failure Criteria for Unidirectional Composites,” J. Applied Mechanics, 47, pp. 329–334 (1980).

    Article  ADS  Google Scholar 

  43. Soni, S. R., “A New Look at Commonly Used Failure Theories in Composite Laminates,” 24th SDM Conference, p. 171 (1983).

    Google Scholar 

  44. Ochoa, O.O. and Engblom, J. J., “Analysis of Progressive Failure in Composites,” Composite Science and Technology, 28 (2), pp. 87–102 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ochoa, O.O., Reddy, J.N. (1992). Case Studies. In: Finite Element Analysis of Composite Laminates. Solid Mechanics and Its Applications, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7995-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7995-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4084-8

  • Online ISBN: 978-94-015-7995-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics