Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 7))

  • 845 Accesses

Abstract

Analysis of structures made of composite materials requires a knowledge of anisotropic elasticity, an appropriate structural theory that accounts for desired kinematics, failure criteria to determine if the structure has failed, and a numerical method to solve the boundary-value problem associated with the structure. The study of anisotropic elasticity and structural theories used to analyze composite laminates constitute the topics for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokolnikoff, I. S., Mathematical Theory of Elasticity 2nd Ed., McGraw-Hill, New York (1965).

    Google Scholar 

  2. Lekhnitski, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, (1963).

    Google Scholar 

  3. Ambartsumyan, S. A., Theory of Anisotropic Plates, Technomic, Westport, CT (1970).

    Google Scholar 

  4. Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York (1984).

    MATH  Google Scholar 

  5. Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic, Lancaster, PA (1987).

    Google Scholar 

  6. Kapania, R. K. and Raciti, S., “Recent Advances in Analysis of Laminated Beams and Plates, Par I: Shear Effects and Buckling,” AIAA Journal, 27 (7), pp. 923–934 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Kapania, R. K. and Raciti, S., “Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation,” AIAA Journal, 27 (7), 935–946 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Noor, A. K. and Burton, W. S., “Assessment of Shear Deformation Theories for Multilayered Composite Plates,” Applied Mechanics Reviews, 42 (1), pp. 1–13 (1989).

    Article  ADS  Google Scholar 

  9. Reddy, J. N., “A Review of Refined Theories of Laminated Plates,” Shock and Vibration Digest, 22 (7), pp. 3–17 (1990).

    Article  ADS  Google Scholar 

  10. Reddy, J. N., “A General Non-Linear Third-Order Theory of Plates with Transverse Shear Deformation,” Journal of Non-Linear Mechanics, 25 (6), pp. 677–686 (1990).

    Article  MATH  Google Scholar 

  11. Basset, A. B., “On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells,” Philosophical Transactions of the Royal Society, (London) Ser. A, 181 (6), pp. 433–480 (1890).

    ADS  MATH  Google Scholar 

  12. Hildebrand, F. B., Reissner, E., and Thomas, G. B., “Notes on the Foundations of the Theory of Small Displacements of Orthotopic Shells,” NASA TN-1833, Washington, DC (1949).

    Google Scholar 

  13. Hencky, H., “Uber die Berücksichtigung der Schubverzerrung in ebenen Platten,” Ingenieu-Archiv (current name: Archive of Applied Mechanics), 16, pp. 72–766 (1947).

    Article  MATH  Google Scholar 

  14. Mindlin, R. D., “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” Journal of APplied Mechanics, 18, pp. 31–38 (1951).

    MATH  Google Scholar 

  15. Lo, K. H., Christensen, R. M., and Wu, E. M., “A Higher-Order Theory of Plate Deformation, Part 1: Homogeneous Plates,” Journal of APplied Mechanics, 44 (4), pp. 663–668 (1977).

    Article  ADS  MATH  Google Scholar 

  16. Lo, K. H., Christensen, R. M., and Wu, E. M., “A Higher-Order Theory of Plate Deformation, Part 2: Laminated Plates,” Journal of Applied Mechanics, 44 (4), pp. 669–676 (1977).

    Article  ADS  MATH  Google Scholar 

  17. Chatterjee, S. N. and Kulkarni, S. V., “Shear Correction Factors for Laminated Plates,” AIAA Journal, 17 (5), pp. 498–499 (1979).

    Article  ADS  Google Scholar 

  18. Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates Under Static Load,” Journal of Applied Mechanics, 40 (1), pp. 302–304 (1973).

    Article  ADS  Google Scholar 

  19. Bert, C. W., “Simplified Analysis of Static Shear Factors for Beams of Nonhomogeneous Cross Section,” Journal of Composite Materials, 7, pp. 525–529 (Oct. 1973).

    Article  ADS  Google Scholar 

  20. Stavsky, Y., “On the Theory of Symmetrically Heterogeneous Plates Having the Same Thickness Variation of the Elastic Moduli,” in Topics in Applied Mechanics, Volume, D. Abir, F. Ollendorff and M. Reiner (Eds.), Elsevier, NY, pp. 105–166 (1965).

    Google Scholar 

  21. Yang, P. C, Norris, C. H., and Stavsky, Y., “Elastic Wave Propagation in Heterogeneous Plates,” International Journal of Solids and Structures, 2, pp. 665–684 (1966).

    Article  Google Scholar 

  22. Whitney, J. M., “The Effect of Transverse Shear Deformation in the Bending of Laminated Plates,” Journal of Composite Materials, 3, pp. 534–547 (July 1969).

    Article  ADS  Google Scholar 

  23. Whitney, J. M. and Pagano, N. J., “Shear Deformation in Heterogeneous Anisotropic Plates,” Journal of Applied Mechanics, 37 (4), pp. 1031–1036 (1970).

    Article  ADS  MATH  Google Scholar 

  24. Reddy, J. N., “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, 51, pp. 745–752 (1984).

    Article  ADS  MATH  Google Scholar 

  25. Reddy, J. N., “A Refined Nonlinear Theory of Plates with Transverse Shear Deformation,” International Journal of Solids and Structures, 20 (9/10), pp. 881–896 (1984).

    Article  MATH  Google Scholar 

  26. Vlasov, B. F., “Ob uravneniyakh teovii isgiba plastinok (on the Equations on the Theory of Bending of Plates)”, Izv. Akd. Nauk SSR, OTN, 4, pp. 102–109 (1958).

    Google Scholar 

  27. Jemeilita, G., “Techniczna teoria plyt S’redniej Grubosci,” (Technical Theory of Plates with Moderate Thickness), Rozprawy Inzynierskie, Polska Akademia Nauk, 23 (3), pp. 483–499 (1975).

    Google Scholar 

  28. Schmidt, R., “A Refined Nonlinear Theory of Plates with Transverse Shear Deformation,” Journal of Industrial Mathematics Society, 27 (1), pp. 23–38 (1977).

    MATH  Google Scholar 

  29. Krishna Murty, A. V., “Higher Order Theory for Vibration of Thick Plates,” AIAA Journal, 15 (12), pp. 1823–1824 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  30. Levinson, M., “An Accurate, Simple Theory of the Statics and Dynamics of Elastic Plates,” Mechanics Research Communications, 7 (6), pp. 343–350 (1980).

    Article  MATH  Google Scholar 

  31. Seide, P., “An Improved Approximate Theory for the Bending of Laminated Plates,” Mechanics Today, 5, pp. 451–466 (1980).

    Google Scholar 

  32. Murthy, M. V. V., “An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates,” NASA Technical Paper, 1903, pp. 1–37 (Nov. 1981).

    Google Scholar 

  33. Bhimaraddi, A. and Stevens, L. K., “A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates,” Journal of Applied Mechanics, 51, pp. 195–198 (Mar. 1984).

    Article  ADS  Google Scholar 

  34. Di Sciuva, M., “A Refined Transverse Shear Defor-mation Theory for Multi-layered Anisotropic Plates,” Atti Accad Sci. Torino, 118, pp. 279–295 (1984).

    MATH  Google Scholar 

  35. Ren, J. G.,“A New Theory of Laminated Plate,” Composites Science and Technology, 26 (3), pp. 225–239 (1986).

    Article  Google Scholar 

  36. Reddy, J. N., “On Refined Theories of Composite Laminates,” Meccanica, 25, pp. 230–238 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  37. Reddy, J. N., “Generalization of Two-Dimensional Theories of Laminated Composite Plates,” Communications in Applied Numerical Methods, 3, pp. 173–180 (1987).

    Article  MATH  Google Scholar 

  38. Robbins, D. H. and Reddy, J. N., “Modeling of Thick Composites Using a Layer-Wise Laminate Theory,” Research Report No. CCMS-91–10, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1991, also to appear in: International Journal for Numerical Methods in Engineering.

    Google Scholar 

  39. Robbins, D. H. and Reddy, J. N., “On the Modeling of Free-Edge Stress Fields and Delaminations in Thick Composite Laminates,” in Composite Structures for Aerospace Applications, J. N. Reddy and A. V. Krishna Murty (eds.), Narosa Publishing House, New Delhi (1992).

    Google Scholar 

  40. Robbins, D. H. and Reddy, J. N., “The Effects of Kinematic Assumptions on Computed Strain Energy Release Rates for Delaminated Composite Plates,” Modeling and Scientific Computing, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ochoa, O.O., Reddy, J.N. (1992). Mechanics of Composite Laminates. In: Finite Element Analysis of Composite Laminates. Solid Mechanics and Its Applications, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7995-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7995-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4084-8

  • Online ISBN: 978-94-015-7995-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics