Advertisement

Mechanics of Composite Laminates

  • O. O. Ochoa
  • J. N. Reddy
Chapter
  • 577 Downloads
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 7)

Abstract

Analysis of structures made of composite materials requires a knowledge of anisotropic elasticity, an appropriate structural theory that accounts for desired kinematics, failure criteria to determine if the structure has failed, and a numerical method to solve the boundary-value problem associated with the structure. The study of anisotropic elasticity and structural theories used to analyze composite laminates constitute the topics for this chapter.

Keywords

Displacement Field Composite Laminate Plate Theory Laminate Plate Shear Deformation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokolnikoff, I. S., Mathematical Theory of Elasticity 2nd Ed., McGraw-Hill, New York (1965).Google Scholar
  2. 2.
    Lekhnitski, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, (1963).Google Scholar
  3. 3.
    Ambartsumyan, S. A., Theory of Anisotropic Plates, Technomic, Westport, CT (1970).Google Scholar
  4. 4.
    Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York (1984).zbMATHGoogle Scholar
  5. 5.
    Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic, Lancaster, PA (1987).Google Scholar
  6. 6.
    Kapania, R. K. and Raciti, S., “Recent Advances in Analysis of Laminated Beams and Plates, Par I: Shear Effects and Buckling,” AIAA Journal, 27 (7), pp. 923–934 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Kapania, R. K. and Raciti, S., “Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation,” AIAA Journal, 27 (7), 935–946 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Noor, A. K. and Burton, W. S., “Assessment of Shear Deformation Theories for Multilayered Composite Plates,” Applied Mechanics Reviews, 42 (1), pp. 1–13 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    Reddy, J. N., “A Review of Refined Theories of Laminated Plates,” Shock and Vibration Digest, 22 (7), pp. 3–17 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    Reddy, J. N., “A General Non-Linear Third-Order Theory of Plates with Transverse Shear Deformation,” Journal of Non-Linear Mechanics, 25 (6), pp. 677–686 (1990).zbMATHCrossRefGoogle Scholar
  11. 11.
    Basset, A. B., “On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells,” Philosophical Transactions of the Royal Society, (London) Ser. A, 181 (6), pp. 433–480 (1890).ADSzbMATHGoogle Scholar
  12. 12.
    Hildebrand, F. B., Reissner, E., and Thomas, G. B., “Notes on the Foundations of the Theory of Small Displacements of Orthotopic Shells,” NASA TN-1833, Washington, DC (1949).Google Scholar
  13. 13.
    Hencky, H., “Uber die Berücksichtigung der Schubverzerrung in ebenen Platten,” Ingenieu-Archiv (current name: Archive of Applied Mechanics), 16, pp. 72–766 (1947).zbMATHCrossRefGoogle Scholar
  14. 14.
    Mindlin, R. D., “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” Journal of APplied Mechanics, 18, pp. 31–38 (1951).zbMATHGoogle Scholar
  15. 15.
    Lo, K. H., Christensen, R. M., and Wu, E. M., “A Higher-Order Theory of Plate Deformation, Part 1: Homogeneous Plates,” Journal of APplied Mechanics, 44 (4), pp. 663–668 (1977).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Lo, K. H., Christensen, R. M., and Wu, E. M., “A Higher-Order Theory of Plate Deformation, Part 2: Laminated Plates,” Journal of Applied Mechanics, 44 (4), pp. 669–676 (1977).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Chatterjee, S. N. and Kulkarni, S. V., “Shear Correction Factors for Laminated Plates,” AIAA Journal, 17 (5), pp. 498–499 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates Under Static Load,” Journal of Applied Mechanics, 40 (1), pp. 302–304 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    Bert, C. W., “Simplified Analysis of Static Shear Factors for Beams of Nonhomogeneous Cross Section,” Journal of Composite Materials, 7, pp. 525–529 (Oct. 1973).ADSCrossRefGoogle Scholar
  20. 20.
    Stavsky, Y., “On the Theory of Symmetrically Heterogeneous Plates Having the Same Thickness Variation of the Elastic Moduli,” in Topics in Applied Mechanics, Volume, D. Abir, F. Ollendorff and M. Reiner (Eds.), Elsevier, NY, pp. 105–166 (1965).Google Scholar
  21. 21.
    Yang, P. C, Norris, C. H., and Stavsky, Y., “Elastic Wave Propagation in Heterogeneous Plates,” International Journal of Solids and Structures, 2, pp. 665–684 (1966).CrossRefGoogle Scholar
  22. 22.
    Whitney, J. M., “The Effect of Transverse Shear Deformation in the Bending of Laminated Plates,” Journal of Composite Materials, 3, pp. 534–547 (July 1969).ADSCrossRefGoogle Scholar
  23. 23.
    Whitney, J. M. and Pagano, N. J., “Shear Deformation in Heterogeneous Anisotropic Plates,” Journal of Applied Mechanics, 37 (4), pp. 1031–1036 (1970).ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Reddy, J. N., “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, 51, pp. 745–752 (1984).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Reddy, J. N., “A Refined Nonlinear Theory of Plates with Transverse Shear Deformation,” International Journal of Solids and Structures, 20 (9/10), pp. 881–896 (1984).zbMATHCrossRefGoogle Scholar
  26. 26.
    Vlasov, B. F., “Ob uravneniyakh teovii isgiba plastinok (on the Equations on the Theory of Bending of Plates)”, Izv. Akd. Nauk SSR, OTN, 4, pp. 102–109 (1958).Google Scholar
  27. 27.
    Jemeilita, G., “Techniczna teoria plyt S’redniej Grubosci,” (Technical Theory of Plates with Moderate Thickness), Rozprawy Inzynierskie, Polska Akademia Nauk, 23 (3), pp. 483–499 (1975).Google Scholar
  28. 28.
    Schmidt, R., “A Refined Nonlinear Theory of Plates with Transverse Shear Deformation,” Journal of Industrial Mathematics Society, 27 (1), pp. 23–38 (1977).zbMATHGoogle Scholar
  29. 29.
    Krishna Murty, A. V., “Higher Order Theory for Vibration of Thick Plates,” AIAA Journal, 15 (12), pp. 1823–1824 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Levinson, M., “An Accurate, Simple Theory of the Statics and Dynamics of Elastic Plates,” Mechanics Research Communications, 7 (6), pp. 343–350 (1980).zbMATHCrossRefGoogle Scholar
  31. 31.
    Seide, P., “An Improved Approximate Theory for the Bending of Laminated Plates,” Mechanics Today, 5, pp. 451–466 (1980).Google Scholar
  32. 32.
    Murthy, M. V. V., “An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates,” NASA Technical Paper, 1903, pp. 1–37 (Nov. 1981).Google Scholar
  33. 33.
    Bhimaraddi, A. and Stevens, L. K., “A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates,” Journal of Applied Mechanics, 51, pp. 195–198 (Mar. 1984).ADSCrossRefGoogle Scholar
  34. 34.
    Di Sciuva, M., “A Refined Transverse Shear Defor-mation Theory for Multi-layered Anisotropic Plates,” Atti Accad Sci. Torino, 118, pp. 279–295 (1984).zbMATHGoogle Scholar
  35. 35.
    Ren, J. G.,“A New Theory of Laminated Plate,” Composites Science and Technology, 26 (3), pp. 225–239 (1986).CrossRefGoogle Scholar
  36. 36.
    Reddy, J. N., “On Refined Theories of Composite Laminates,” Meccanica, 25, pp. 230–238 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Reddy, J. N., “Generalization of Two-Dimensional Theories of Laminated Composite Plates,” Communications in Applied Numerical Methods, 3, pp. 173–180 (1987).zbMATHCrossRefGoogle Scholar
  38. 38.
    Robbins, D. H. and Reddy, J. N., “Modeling of Thick Composites Using a Layer-Wise Laminate Theory,” Research Report No. CCMS-91–10, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1991, also to appear in: International Journal for Numerical Methods in Engineering. Google Scholar
  39. 39.
    Robbins, D. H. and Reddy, J. N., “On the Modeling of Free-Edge Stress Fields and Delaminations in Thick Composite Laminates,” in Composite Structures for Aerospace Applications, J. N. Reddy and A. V. Krishna Murty (eds.), Narosa Publishing House, New Delhi (1992).Google Scholar
  40. 40.
    Robbins, D. H. and Reddy, J. N., “The Effects of Kinematic Assumptions on Computed Strain Energy Release Rates for Delaminated Composite Plates,” Modeling and Scientific Computing, in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • O. O. Ochoa
    • 1
  • J. N. Reddy
    • 1
  1. 1.Texas A&M UniversityTexasUSA

Personalised recommendations