Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 39))

Abstract

To manage breeding programs, we must optimize adaptations to economic constraints and biological conditions. Although a single variety would ideally be well adapted to all environments, such a condition rarely exists for breeding programs in most species. Important genotype × environment (G × E) interactions usually exist, resulting from changes in relative performance rank among genotypes, so that genotypes and environments must be specified separately (Gregorius and Namkoong 1986). As a consequence, seed sources are usually subdivided into zones within which rank changes are minimal. Even when there are no changes in ranking in individual traits, multiple trait indices can result in rank changes among sources (Namkoong 1985, Namkoong and Johnson 1987), thus generating the need for many breeding zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional Reading

The following readings present introductory treatments of many of the subjects covered in this chapter

  • Wright, J. W. 1978. Introduction to Forest Genetics. Academic Press, New York.

    Google Scholar 

  • Zobel, B. J., and Talbert, J. 1984. Applied Forest Tree Improvement. J. Wiley & Sons, New York.

    Google Scholar 

More detailed discussions of these subjects can be found in

  • Namkoong, G. 1979. Introduction to Quantitative Genetics in Forestry. Tech. Bull. No. 1588, USDA Forest Service.

    Google Scholar 

  • Namkoong, G., Kang, H. C, and Brouard, J. S. 1988. Tree Breeding: Principles and Strategies. Springer-Verlag, New York. See especially pages 103–115 and 132–149.

    Google Scholar 

Thorough discussions of multivariate techniques are in

  • Gittins, R. 1985. Canonical Analysis. A Review with Applications in Ecology. Springer-Verlag, New York.

    Book  Google Scholar 

  • Morrison, D. F. 1990. Multivariate Statistical Methods. McGraw-Hill, New York.

    Google Scholar 

Response surface methodologies, with the focus primarily on fractional factorials and trend surface analysis are covered in

  • Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. J. Wiley & Sons, New York.

    Google Scholar 

For reviews of genotype by environment interactions and parametric measures ofgenotypic stability see

  • Baker, R. J. 1988. Differential response to environmental stress. In Proc. Second Int. Conf. Quant. Genetics (Wier, B. S., Eisen, E. J., Goodman, M. M., and Namkoong, G., eds), pp. 492–504. Sinauer Assoc, Inc., Sunderland, MA.

    Google Scholar 

  • Bridgwater, F. E., and Stonecypher, R. W. 1978. “Genotype x environment interaction: Implications in tree breeding programs.” Proc. Fifth N. Amer. For. Biol. Workshop, pp. 46–63.

    Google Scholar 

  • Matheson, A. C, and Cotterill, P. P. 1990. Utility of genotype-environment interactions. For. EcoL Manage. 30:159–174.

    Article  Google Scholar 

Acknowledgements

  • I thank J. V. Brotschol, L. Fins, and S. T. Friedman for their patience and editorial assistance. Thanks are also due to R. K. Campbell, W. J. Libby, S. Magnussen, C. I. Millar, and G. Namkoong for many helpful comments. And I thank F. E. Bridgwater for alerting me to the biplot M. T. Conkle generously provided the white fir range map.

    Google Scholar 

Literature Cited

  • Abou-El-Fittouh, H. A., Rawlings, J. O., and Miller, P. A. 1969. Classification of environments to control genotype by environment interactions with an application to cotton. Crop Sci. 9:135–140.

    Article  Google Scholar 

  • Aitken, S. N., Westfall, R. D., and Libby, W. J. 1987. “Multivariate analysis of geographic variation in white fir (Abies concolor).” Abstracts of Contributed Posters and Satellite Conferences, Second Int. Conf. Quant. Genetics, Abstract 2, Raleigh, NC.

    Google Scholar 

  • Baker, R. J. 1988. Differential response to environmental stress. In Proc. Second Int. Conf. Quant. Genetics (Wier, B. S., Eisen, E. J., Goodman, M. M., and Namkoong, G., eds), pp. 492–504. Sinauer Assoc., Inc., Sunderland, MA.

    Google Scholar 

  • Box, G. E. P., and Draper, N. R. 1987. Empirical Model-building and Response Surfaces. J. Wiley & Sons, New York.

    Google Scholar 

  • Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. J. Wiley & Sons, New York.

    Google Scholar 

  • Burdon, R. D. 1977. Genetic correlation as a concept for studying genotypeenvironment interaction in forest tree breeding. Silvae Genet. 26(5–6):168–175.

    Google Scholar 

  • Campbell, R. K. 1984. Procedures for determining the biological limits of breeding zones in the Pacific Northwest. In Progeny Testing, Servicewide Genetics Workshop, Charleston, SC. pp. 24–33.

    Google Scholar 

  • Campbell, R. K. 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Geriet. 35(2–3):85–96.

    Google Scholar 

  • Conkle, M. T. 1973. Growth data for 29 years from the California elevational transect study of ponderosa pine. For. Sci. 19:31–39.

    Google Scholar 

  • Corsten, L. C. A., and Gabriel, K. R. 1976. Graphical exploration in comparing variance matrices. Biometrics 32(6):851–863.

    Article  Google Scholar 

  • Cotterill, P. P. 1990. Short note: Numbers of families and progeny required for provenance testing. Silvae Genet. 39(2):82–83.

    Google Scholar 

  • Dorman, K. W. 1976. The Genetics and Breeding of Southern Pines. Agric. Handbook 471, USDA.

    Google Scholar 

  • Draper, N. R., and Smith, H. 1966. Applied Regression Analysis. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Eberhart, S. A., and Russell, W. A. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36–40.

    Article  Google Scholar 

  • Findlay, K. W., and Wilkinson, G. N. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14:742–754.

    Article  Google Scholar 

  • Friedman, S. T., and Namkoong, G. 1986. Estimating family means using unbalanced incomplete blocks. In IUFRO Conf., Joint Meeting of Working Parties on Breeding Theory, Progeny Testing, and Seed Orchards, Williamsburg, VA. pp. 457–468.

    Google Scholar 

  • Gabriel, K. R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453–467.

    Article  Google Scholar 

  • Gittins, R. 1985. Canonical Analysis. A Review with Applications in Ecology. Springer-Verlag, New York.

    Book  Google Scholar 

  • Gregorius, H.-R., and Namkoong, G. 1986. Joint analysis of genotypic and environmental effects. Theor. Appl. Geriet. 72:413–422.

    Article  Google Scholar 

  • Harvey, W. R., and Townsend, A. M. 1985. Selection on a combination of individual, family, and stand merit in provenance tests. Forest Sci. 31(4):813–821.

    Google Scholar 

  • Kang, M. S. 1989. A new SAS program for calculating stability-variance parameters. J. Hered. 80(5):415.

    Google Scholar 

  • Kang, M. S., Miller, J. D., and Darrah, L. L. 1987. A note on relationship between stability variance and ecovalence. J. Hered. 78:107.

    Google Scholar 

  • Knight, R. 1970. The measurement and interpretation of genotype-environment interaction. Euphytica 19:225–235.

    Article  Google Scholar 

  • Knight, R. 1973. The relation between hybrid vigour and genotype-environment interactions. Theor. Appl. Genet. 43:311–318.

    Article  Google Scholar 

  • Kung, F. H., and Clausen, K. E. 1984. Graphic solution in relating seed sources and planting sites for white ash plantations. Silvae Genet. 33(2–3):46–53.

    Google Scholar 

  • Léon, J., and Becker, H. C. 1988. Repeatability of some statistical measures of phenotypic stability — correlations between single year results and multi years results. Plant Breed. 100(2):137–142.

    Article  Google Scholar 

  • Lin, C. S., Binns, M. R., and Lefkovitch, L. P. 1986. Stability analysis: where do we stand? Crop Sci. 26(5):894–900.

    Article  Google Scholar 

  • Magnussen, S., and Yeatman, C. W. 1988. Provenance hybrids in jack pine: 15-year results in eastern Canada. Silvae Genet. 37(5–6):206–218.

    Google Scholar 

  • Morrison, D. F. 1976. Multivariate Statistical Methods. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Namkoong, G. 1982. An application of biometrics in provenance analysis. J. Tree Sci. 1(1&2):57–63.

    Google Scholar 

  • Namkoong, G. 1985. The influence of composite traits on genotype by environment relations. Theor. Appl. Genet. 70:315–317.

    Article  Google Scholar 

  • Namkoong, G., and Johnson, J. A. 1987. Influence of the value function on genotype-by-environment relations. Silvae Genet. 36(2):92–94.

    Google Scholar 

  • Namkoong, G., Kang, H. C., and Brouard, J. S. 1988. Tree Breeding: Principles and Strategies. Springer-Verlag, New York.

    Book  Google Scholar 

  • Namkoong, G., Usanis, R. A., and Silen, R. R. 1972. Age-related variation in genetic control of height growth in Douglas-fir. Theor. Appl. Geriet. 42:151–159.

    Article  Google Scholar 

  • Raymond, C. A., and Lindgren, D. 1986. A model for genetic flexibility. In Provenances and Forest Tree Breeding ofHigh Latitudes (Lingren, D., ed), pp. 159–177. Swedish Univ. Agr. Sci., Dept. For. Genetics & Plant Physiol.,

    Google Scholar 

  • Raymond, C. A., and Namkoong, G. 1990. Optimizing breeding zones: Genetic flexibility or maximum value. Silvae Genet. In press.

    Google Scholar 

  • Rehfeldt, G. E. 1986. Adaptive variation in Pinus ponderosa from Intermountain regions. I. Snake and Salmon River basins. Forest Sci. 32(1):79–92.

    Google Scholar 

  • Rehfeldt, G. E. 1988. Ecological genetics of Pinus contorta from the Rocky Mountains (USA): a synthesis. Silvae Genet. 37(3–4):131–135.

    Google Scholar 

  • Rehfeldt, G. E. 1990. Gene resource management: Using models of genetic variation in silviculture. Genetics/Silviculture Workshop, Wenatchee, WA. In press.

    Google Scholar 

  • Roberds, J., and Namkoong, G. 1986. Maximization of expected value for a trait in an environmental gradient. Ninth N. Amer. For. Biology Workshop, Stillwater, OK, June 15–18, 1986. pp. 179–186.

    Google Scholar 

  • Roberds, J. H., and Namkoong, G. 1989. Population selection to maximize value in an environmental gradient. Theor. Appl. Genet. 77(1):128–134.

    Article  Google Scholar 

  • Rohlf, F. J., and Sokal, R. R. 1981. Statistical Tables. W. H. Freeman & Co., New York.

    Google Scholar 

  • SAS Institute, I. 1985. SAS®User’s Guide: Statistics. SAS Institute Inc, Cary, NC.

    Google Scholar 

  • Shukia, G. K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Hered. 29:237–245.

    Article  Google Scholar 

  • Steele, R. G. D., and Torrie, J. H. 1980. Principles and Procedures of Statistics. McGraw Hill Book Co., New York.

    Google Scholar 

  • Thorpe, R. S. 1987. Complex clines: the predictivity of complicated patterns of geographic variation portrayed by multivariate analysis. Biol. J. Linn. Soc. 31:75–88.

    Article  Google Scholar 

  • Wartenberg, D. 1985. Canonical trend surface analysis: A method for describing geographic patterns. Syst. Zool. 34(3):259–279.

    Article  Google Scholar 

  • Westfall, R. D., Cody, J., and Hunt, C. M. 1977. Suggested tree planting zones and corresponding seed collection zones for the Northeast. In A seed collection-seed bank and forest nursery system for the Northeast, Completion Report, pp. 37–49. Applied Forestry Research Institute, SUNY College of Environmental Science and Forestry, Syracuse, NY.

    Google Scholar 

  • Williams, B. K., and Titus, K. 1988. Assessment of sampling stability in ecological applications of discriminant analysis. Ecology 69(4):1275–1285.

    Article  Google Scholar 

  • Wolfram, S. 1988. Mathematica ™. A System for Doing Mathematics by Computer. Addison-Wesley Publishing Company, Inc., Redwood City, CA.

    Google Scholar 

  • Wricke, G. 1962. Über eine Methode zur Erfassung der ecologischen Streubreite in Feldversuchen. A. Pflanzenzucht 47:92–96.

    Google Scholar 

  • Wright, J. W. 1978. Introduction to Forest Genetics. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westfall, R.D. (1992). Developing Seed Transfer Zones. In: Fins, L., Friedman, S.T., Brotschol, J.V. (eds) Handbook of Quantitative Forest Genetics. Forestry Sciences, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7987-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7987-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4112-8

  • Online ISBN: 978-94-015-7987-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics