Skip to main content

Silicon Based Surface Acoustic Wave Gas Sensors

  • Chapter
Sensors and Sensory Systems for an Electronic Nose

Part of the book series: NATO ASI Series ((NSSE,volume 212))

Abstract

Acoustic wave devices are attractive for chemical gas sensor applications. After a short historical overview, the physical and electronic aspects are treated. These include basic acoustic wave physics and electronics as well as design considerations for chemical sensors. Research on acoustic wave chemical sensors deals with the development of suitable chemical interfaces that transduce signals from the chemical domain to the physical domain as selectively as possible. Chemical interface design philosophies are explained. The second part of the paper deals with silicon-based surface acoustic wave chemical sensors for NO2. Such a sensor consisting of two identical Si-SiO2-ZnO layered delay-lines has been realised. Together with a dual automatic gain controlled amplifier a dual delay-line oscillator system is formed. Results of the system when used as a sensor for NO2 are presented. One of the delay-lines is covered with copper phthalocyanine as the chemical interface, grown by a physical vapour deposition technique. The experimental performance has been compared with previous results obtained with a similar chemical sensor system based on quartz. Parameters such as sensitivity, selectivity, drift, response time and noise have been examined. Furthermore, a beneficial effect of a passivation layer was found on the response of the reference delay-line, i.e. a more passive reference delay-line was obtained. In contrast, a passivating silicon nitride layer within the measuring delay-line dramatically reduced chemical sensitivity.

Due to illness the author was unable to attend the NATO ARW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Nylander, Chemical and biological sensors, J. Phys. E, Sci. Instrum., 18 (1985) 736–749.

    Article  Google Scholar 

  2. J. Janata and A. Bezegh, Chemical sensors, Anal. Chem., 60 (1987) 62R–74R.

    Article  Google Scholar 

  3. R. M. White, New propects for acoustic sensors: an overview, Proc. 41st Annual Frequency Control Symp., (1987) 333-338.

    Google Scholar 

  4. M. S. Nieuwenhuizen and A. W. Barendsz, Processes involved at the chemical interface of a SAW chemosensor, Sensors and Actuators, 11 (1987) 45–62.

    Article  Google Scholar 

  5. H. Wohltjen, Mechanism of operation and design considerations for surface acoustic wave device vapour sensors, Sensors and Actuators, 5 (1984) 307–324.

    Article  Google Scholar 

  6. M. S. Nieuwenhuizen and A. Venema, Surface acoustic wave chemical sensors, Sensors and Materials, 5 (1989) 261–300.

    Google Scholar 

  7. C. G. Fox and J. F. Alder, Surface acoustic wave sensors for atmospheric gas monitoring. A review, The Analyst, 114 (1989) 997–1004.

    Article  Google Scholar 

  8. J. Curie and P. Curie, Bull. Soc. Min. Paris, 3 (1880) 90.

    Google Scholar 

  9. W. H. King Jr., Piezoelectric sorption detector, Anal. Chem., 36 (1964) 1735–1739.

    Article  Google Scholar 

  10. J. Hlavay and G. G. Guilbault, Applications of the piezoelectric crystal detector in analytical chemistry, Anal Chem., 49 (1977) 1890–1898.

    Article  Google Scholar 

  11. J. F. Alder and J. J. McCallum, Piezoelectric crystals for mass and chemical measurements, The Analyst, 108 (1983) 1169–1189.

    Article  Google Scholar 

  12. C. G. Guilbault and J. M. Jordan, Analytical uses of piezoelectric crystals: A review, CRC Critical Reviews, 19 (1988) 1–28.

    Article  Google Scholar 

  13. Lord Rayleigh, Proc. London Math. Soc., 17, (1885) 4–11.

    Article  MATH  Google Scholar 

  14. G. W. Farnell, in H. Matthews (ed.), Surface Wave Filters, Wiley, 1977.

    Google Scholar 

  15. R. M. White and F. W. Voltmer, Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett., 7 (1965) 314–316.

    Article  Google Scholar 

  16. H. Wohltjen and R. Dessy, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal., Chem. 51 (1979) 1458–1465.

    Article  Google Scholar 

  17. H. Wohltjen and R. Dessy, Surface acoustic wave probe for chemical analysis. II. Gas chromatography detector, Anal Chem., 51 (1979) 1465–1470.

    Article  Google Scholar 

  18. H. Wohltjen and R. Dessy, Surface acoustic wave probe for chemical analysis. III. Thermomechanical polymer analyzer, Anal Chem., 51 (1979) 1470–1478.

    Article  Google Scholar 

  19. H. Wohltjen, Methods of detection with surface acoustic wave and apparati therefor, US Patent 4312328 (1979).

    Google Scholar 

  20. J. F. Vetelino and D. L. Lee, Surface acoustic wave oscillator gas detector, WO appl. 8301511 (1983).

    Google Scholar 

  21. A. Bryant, D. L. Lee, and J. F. Vetelino, A surface acoustic wave gas detector, Proc. IEEE Ultrasonics Symp., Chicago (1981) 171-174.

    Google Scholar 

  22. A. D’Amico, A. Palma, and E. Verona, Surface acoustic wave hydrogen sensor, Sensors and Actuators, 3 (1982) 31–39.

    Article  Google Scholar 

  23. S. J. Martin, S. K. Schwartz, R. L. Gunshor, and R. F. Pierret, Surface acoustic wave resonators on a ZnO-on-Si layered medium, J. Appl Phys., 54 (1983) 561–569.

    Article  Google Scholar 

  24. S. J. Martin, K. S. Schweizer, S. K. Schwartz, and R. L. Gunshor, Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator, Proc. IEEE Ultrasonics Symp., Dallas (1984) 207-212.

    Google Scholar 

  25. S. J. Martin, K. S. Schweizer, A. J. Ricco, and T. E. Zipperian, Gas sensing with surface acoustic wave devices, Proc. 3rd Int. Conf. on Sensors and Actuators, Philadelphia (1985) 71-73.

    Google Scholar 

  26. J. H. Visser, and A. Venema, Silicon SAW devices and electromagnetic feedthrough, Proc. IEEE Ultrasonics Symp., Chicago (1988) 297-301.

    Google Scholar 

  27. C. Caliendo, A. D’Amico, A. Verardi, and E. Verona, Surface acoustic wave H2 gas sensor on silicon substrate, Proc. IEEE Ultrasonics Symp. Chicago (1988) 569-574.

    Google Scholar 

  28. A. Venema, M. J. Vellekoop, E. Nieuwkoop, J. C. Haartsen, M. S. Nieuwenhuizen, A. J. Nederlof, and A. W. Barendsz, A silicon SAW physical-electronic system for sensors, Proc. 4th Int. Conf. on Sensors and Actuators, Tokyo (1987) 481-486.

    Google Scholar 

  29. M. J. Vellekoop, E. Nieuwkoop, J. C. Haartsen, and A. Venema, A monolithic SAW physical-electronic system for sensors, Proc. Ultrasonics Symp., Denver (1987) 641-644.

    Google Scholar 

  30. C. van Dijk and M. S. Nieuwenhuizen, (Bio)chemical sensor research in the Netherlands Organization for Applied Scientific Research in D. L. Wise (ed.), Bioinstrumentation, Research, Development and Applications, Butterworths Publishers, London, 1990, pp. 679–698.

    Google Scholar 

  31. J. Janata, Chemical selectivity of field effect transistors, Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux (1986) 25-317.

    Google Scholar 

  32. J. E. Roederer, and G.J. Bastiaans, Microgravimetric immunoassay with piezoelectric crystals, Anal. Chem., 55 (1983) 2333–2336.

    Article  Google Scholar 

  33. G. J. Bastiaans, and C. M. Good, Immunoassay utilizing a piezoelectric surface acoustic wave mass sensor, Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux (1986) 618-621.

    Google Scholar 

  34. G. J. Bastiaans, Sensor having piezoelectric crystal for microgravimetric immunoassays, US Patent 4735906, (1984).

    Google Scholar 

  35. A. W. Barendsz, and M. S. Nieuwenhuizen, Composite substrate intended for an apparatus for quantitative determination of a component present in a gas or liquid, European Patent 239609, (1987).

    Google Scholar 

  36. M. S. Nieuwenhuizen, A. J. Nederlof, and A. Coomans, A SAW gas sensor for NO2; chemically immobilized phthalocyanines as chemical interface, Frezenius Z. Anal. Chem., 330 (1988) 123–124.

    Article  Google Scholar 

  37. A. Ballato, Surface acoustic wave device for sensing the presence of chemical agents, US Patent 4598224, (1985).

    Google Scholar 

  38. R. E. Miller, Detection of nerve agents using a SAW microsensor array, Proc. US Army Conf. on Chemical Defense Research, (1987).

    Google Scholar 

  39. S. L. Rose, J. W. Grate, and D. S. Ballantine, Data analysis of surface acoustic wave device coating responses using pattern recognition methods, Proc. US Army Conf. on Chemical Defense Research, (1986) 421-428.

    Google Scholar 

  40. S.L. Rose-Pehrsson, Data analysis of surface acoustic wave device coating responses using pattern recognition methods, Proc. US Army Conf. on Chemical Defense Research, (1986) 1610-1617.

    Google Scholar 

  41. S. L. Rose-Pehrsson, J. W. Grate, D. S. Ballantine, Pattern recognition analysis of surface acoustic wave device responses to hazardous vapours including mixtures, Proc. US Army Conf. on Chemical Defense Research, (1987).

    Google Scholar 

  42. D. S. Balantine, S. L. Rose, J. W. Grate, and H. Wohltjen, Correlation of SAW coating responses with solubility properties and chemical structure using pattern recognition, US Naval Research Laboratory Memorandum Report, (1986) 5813.

    Google Scholar 

  43. S. L. Rose-Pehrsson, J. W. Grate, D. S. Ballantine, and P. C. Jurs, Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices, Anal. Chem., 60 (1988) 2801–2811.

    Article  Google Scholar 

  44. A. W. Barendsz, J. C. Vis, M. S. Nieuwenhuizen, M. J. Vellekoop, W. J. Ghijsen, and A. Venema, A SAW sensor for NO2 gas concentration measurements, Proc. IEEE Ultrasonics Symp., San Francisco (1985) 586-587.

    Google Scholar 

  45. M. S. Nieuwenhuizen, A. W. Barendsz, E. Nieuwkoop, M. J. Vellekoop, and A. Venema, Transduction mechanisms in SAW gas sensors, IEEE Electronics Letters, 22 (1989) 184–185.

    Article  Google Scholar 

  46. A. Venema, E. Nieuwkoop, M. J. Vellekoop, A. W. Barendsz, and M. S. Nieuwenhuizen, Design aspects of SAW gas sensors, Sensors and Actuators, 10 (1986) 47–64.

    Article  Google Scholar 

  47. A. Venema, A. Nieuwkoop, M. J. Vellekoop, W. J. Ghijsen, A. W. Barendsz, and M. S. Nieuwenhuizen, NO2 gas concentration measurement with a SAW-chemosensor, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 34 (1987) 148–154.

    Article  Google Scholar 

  48. M. S. Nieuwenhuizen, A. J. Nederlof, and A. W. Barendsz, (Metallo) phthalocyanines as chemical interfaces on a surface acoustic wave gas sensor for nitrogen dioxide, Anal. Chem., 60 (1988) 230–235.

    Article  Google Scholar 

  49. M. S. Nieuwenhuizen and A. J. Nederlof, Surface acoustic wave gas sensor for nitrogen dioxide using phthalocyanines as chemical interfaces. Effects of nitric oxide, halogen gases and prolonged heat treatment, Anal. Chem., 60 (1988) 236–240.

    Article  Google Scholar 

  50. A. J. Nederlof and M. S. Nieuwenhuizen, An automated system for the testing of Surface acoustic wave gas sensors, to be published in Rev. Sci. Instrum.

    Google Scholar 

  51. M. S. Nieuwenhuizen, A. J. Nederlof, M. J. Vellekoop, and A. Venema, Preliminary results with a silicon-based surface acoustic wave chemical sensor for NO2, Sensors and Actuators, 19 (1989) 385–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nieuwenhuizen, M.S., Nederlof, A.J. (1992). Silicon Based Surface Acoustic Wave Gas Sensors. In: Gardner, J.W., Bartlett, P.N. (eds) Sensors and Sensory Systems for an Electronic Nose. NATO ASI Series, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7985-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7985-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4150-0

  • Online ISBN: 978-94-015-7985-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics