Skip to main content

Electronic Noses Based on Field Effect Structures

  • Chapter
Sensors and Sensory Systems for an Electronic Nose

Part of the book series: NATO ASI Series ((NSSE,volume 212))

Abstract

In this chapter we first review the properties of a discrete array of field effect devices to understand some of their selectivity properties. A scanning light pulse technique applied for gas sensing will then be described. The use of the technique to produce maps of the gas sensitivity of large catalytic metal areas is demonstrated. The metal area consisted of overlapping bands of platinum, iridium and palladium which were kept “cold” (≈ 110 °C) at one end and “hot” (≈ 180 °C) at the other end. It is shown how, for example, ammonia, ethanol and hydrogen in air produce distinctly different maps which can be further processed to yield images identifying the gas. These first “olfactory images” serve as an illustration to what can be achieved with a continuous sensing surface or a large chemical sensor matrix. The similarity between such images and pattern formation in the olfactory systems is also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Lundström, M. S. Shivaraman, C. M. Svensson, and L. Lundkvist, Hydrogen sensitive MOS field effect transistor, Appl. Phys. Lett., 26 (1975) 55–57.

    Article  Google Scholar 

  2. I. Lundström, M. Armgarth, A. Spetz, and F. Winquist, Gas sensors based on catalytic metal-gate field-effect transistors, Sensors and Actuators, 10 (1986) 99–421.

    Article  Google Scholar 

  3. I. Lundström, A. Spetz, F. Winquist, U. Ackelid, and H. Sundgren, Catalytic metals and field effect devices — a useful combination, Sensors and Actuators, B1 (1990) 15–20.

    Google Scholar 

  4. J. Janata, Microsensors based on modulation of work function, ibid (1991).

    Google Scholar 

  5. H. A. Schultens, and D. Schild, Biophysical properties of olfactory receptor neurones, ibid (1991).

    Google Scholar 

  6. I. Lundström, Palladium gate hydrogen sensors, Chemical Sensor Technology, Kodansha Ltd., Tokyo, Vol 2, (1989) pp 1-20.

    Google Scholar 

  7. I. Lundström, M. Armgarth, and L.-G. Petersson, Physics with catalytic metal gate chemical sensors, CRC Crit. Rev. Solid State Material Science, 15 (1989) 201–278.

    Article  Google Scholar 

  8. F. Winquist, A. Spetz, M. Armgarth, C. Nylander, and I. Lundström, Modified palladium metal-oxide-semiconductor structures with increased ammonia gas sensitivity, Appl. Phys. Lett., 43 (1983) 839–841.

    Article  Google Scholar 

  9. H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlsson, and S. Wold, Evaluation of a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition, Sensors and Actuators, B2 (1990) 115–123.

    Google Scholar 

  10. H. Sundgren, F. Winquist, I. Lukkari, and I. Lundström, Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture, Meas. Sci. Technol., 2 (1991) 464–469.

    Article  Google Scholar 

  11. H. Sundgren, F. Winquist, and I. Lundström, Artificial neural networks and statistical pattern recognition improve MOSFET gas sensor array calibration, Transducers’ 91, Digest of Technical Papers, (1991) pp. 574-577.

    Google Scholar 

  12. Neuronics Inc., Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  13. AIM-software, AbTech Corporation, Virginia, U.S.A.

    Google Scholar 

  14. H. Sundgren, H. Vollmer, T. Pettersson, and I. Lundström, to be published.

    Google Scholar 

  15. T. H. DiStefano and J. M. Viggiano, Interface imaging by scanning internal photoemission, IBM J. Res. Develop., 18 (1974) 94–99.

    Article  Google Scholar 

  16. O. Engström and A. Carlsson, Scanned light pulse technique for the investigation of insulator-semiconductor interfaces, J. Appl. Phys., 54 (1983) 5245–5251.

    Article  Google Scholar 

  17. I. Lundström, R. Erlandsson, U. Frykman, E. Hedborg, A. Spetz, H. Sundgren, S. Welin, and F. Winquist, Artifical “olfactory” images from a chemical sensor using a light-pulse technique, Nature, 352 (1991) 47–50.

    Article  Google Scholar 

  18. U. Ackelid and L.-G. Petersson, How a limited mass transfer in the gas phase may affect the steady-state response of a Pd-MOS hydrogen sensor, Sensors and Actuators, B3 (1991) 139–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lundström, I., Hedborg, E., Spetz, A., Sundgren, H., Winquist, F. (1992). Electronic Noses Based on Field Effect Structures. In: Gardner, J.W., Bartlett, P.N. (eds) Sensors and Sensory Systems for an Electronic Nose. NATO ASI Series, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7985-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7985-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4150-0

  • Online ISBN: 978-94-015-7985-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics