Skip to main content

Oxygen Cycling in Cyanobacteria, with Specific Reference to Oxygen Protection in Trichodesmium spp.

  • Chapter
Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs

Part of the book series: NATO ASI Series ((ASIC,volume 362))

Abstract

Trichodesmium uses an unidentified mechanism to protect nitrogenase from oxygen inactivation. This paper considers the role of various oxygen consuming reactions, including photorespiration, “dark” respiration (cytochrome aa3 activity), and Mehler reaction, in lowering net oxygen evolution during photosynthesis. Considering our basic understanding of these reactions in cyanobacteria, Mehler reaction activity was hypothesized to play a significant role because of its potential for supplying ATP through pseudocyclic photophosphorylation and reducing oxygen during photosynthesis. Light-dependent oxygen uptake and evolution rates were measured on field-collected samples of Trichodesmium thiebautii using membrane inlet mass spectrometry. Oxygen evolution followed a typical saturation response as a function of short-term exposure to different light intensities. Oxygen consumption in the dark and the light was unusually high for a cyanobacterium. The dark respiration rate was approximately 30% of the maximum gross oxygen evolution rate. Oxygen uptake was also light dependent, increasing in proportion to light intensity from 50 to 400 μE m−2 s−1, then remaining constant up to 1700 μE m−2 s−1. The high respiration rate resulted in a light compensation point of 280 μE m−2 s−1. Application of the photosynthetic electron transport inhibitor, DCMU, caused a rapid inhibition of both oxygen evolution and the light-dependent portion of the oxygen consumption flux, indicating that the light-dependent respiration was due to Mehler reaction activity. Oxygen reduction by Mehler reaction, as opposed to NADP+ reduction, accounted for approximately 55% of the electron flow through the light reactions. These high oxygen cycling rates may explain the occasional observations of depleted oxygen zones within Trichodesmium colonies and may contribute to the oxygen protection of nitrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aizawa, K, and Miyachi, S. (1986) ‘Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria’ FEMS Microbiol. Rev. 39, 215–233.

    Article  CAS  Google Scholar 

  • Badger, M.R. (1985) ‘Photosynthetic oxygen exchange’ Ann. Rev. PL Physiol. 36, 27–53.

    Article  CAS  Google Scholar 

  • Badger, M.R. and Andrews, T.J. (1982) ‘Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp.’ Plant Physiol. 70, 517–523.

    Article  PubMed  CAS  Google Scholar 

  • Badger, M.R., Bassett, M. and Comins, H.N. (1985) ‘A model for HCO3 - accumulation and photosynthesis in the cyanobacterium Synechococcus sp.’ Plant Physiol. 77, 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Beardall, J. (1985) ‘Occurrence and importance of HCO3 - utilization in microscopic algae’ in, W.J. Lucas and J.A. Berry (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms. Am. Soc. Plant Physiol., Rockville, pp. 83–96.

    Google Scholar 

  • Beardall, J. (1989) ‘Photosynthesis and photorespiration in marine phytoplankton’ Aquat. Bot. 34, 105–130.

    Article  CAS  Google Scholar 

  • Bergman, B. and Carpenter, E.J. (1991) ‘Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii’ J. Phycol. 27, 158–165.

    Article  CAS  Google Scholar 

  • Bryceson, I and Fay, P. (1981) ‘Nitrogen fixation in Oscillatoria (Trichodesmium)erythraea in relation to bundle formation and trichome differentiation’ Mar. Biol. 61, 159–166.

    Article  Google Scholar 

  • Burris, J.E. (1981) ‘Effects of oxygen and inorganic carbon concentrations on the photosynthetic quotient of marine algae’ Mar. Biol. 65, 215–219.

    Article  CAS  Google Scholar 

  • Carpenter, E.J. (1983) ‘Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium) ’ Mar. Biol. Let. 4, 69–85.

    CAS  Google Scholar 

  • Carpenter, E.J., Chang, J., Cottrell, M., Schubauer, J., Paerl, H.W., Bebout, B.M., and Capone, D.G. (1990) ‘Re-evaluation of nitrogenase oxygen-protective mechanisms in the planktonic marine cyanobacterium Trichodesmium’ Mar. Ecol. Prog. Ser. 65, 151–158.

    Article  CAS  Google Scholar 

  • Carpenter, E.J. and Price, C.C. (1976) ‘Marine Oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts’ Science 191, 1276–1280.

    Article  Google Scholar 

  • Furbank, R.T. and Badger, M.R. (1983) ‘Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids’ Biochim. Biophys. Acta 723, 400–409.

    Article  CAS  Google Scholar 

  • Glover, H.E. and Morris, I. (1981) ‘Photosynthetic characteristics of coccoid marine cyanobacteria’ Arch Microbiol. 129, 42–46.

    Article  CAS  Google Scholar 

  • Harris, G.P. (1980) ‘The measurement of photosynthesis in natural populations of phytoplankton’ in I. Morris (ed.) The physiological ecology of phytoplankton. Univ. Cal. Press, Berkeley, pp. 129–187.

    Google Scholar 

  • Hoch, G. and Kok, B. (1963) ‘A mass spectrometer inlet system for sampling gases dissolved in liquid phases’ Arch. Biochem. Biophys. 101, 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, G., Owens, O.H., and Kok, B. (1963) ‘Photosynthesis and respiration’ Arch. Biochem. Biophys. 101, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Karagouni, A.D., Bloye, S.A. and Carr, N.G. (1990) ‘The presence and absence of inorganic carbon concentrating systems in unicellular cyanobacteria’ FEMS Microbiol. Lett. 68, 137–142.

    Article  CAS  Google Scholar 

  • Kraushaar, H., Hager, S., Wastyn, M., and Peschek, G.A. (1990) ‘Immunologically cross-reactive and redox-competent cytochrome b6/f-complexes in the chlorophyll-free plasma membrane of cyanobacteria’ FEBS Lett. 273, 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M.R., Ulloa, O., and Platt, T. (1988) ‘Photosynthetic action, absorption, and quantum yield spectra for a natural population of Oscillatoria in the north Atlantic’ Limnol. Oceanogr. 33, 92–98.

    Article  Google Scholar 

  • Li, W.K.W., Glover, H.E., and Morris, I. (1980) ‘Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea’ Limnol. Oceanogr. 25, 447–456.

    Article  CAS  Google Scholar 

  • Lloyd, N.D.H., Canvin, D.T., and Culver, D.A. (1977) ‘Photosynthesis and photorespiration in algae’ Plant Physiol. 59, 936–940.

    Article  PubMed  CAS  Google Scholar 

  • Matthijs, J.C.P. and Lubberding, HJ. (1988) ‘Dark respiration in cyanobacteria’ in L.J. Rogers and J.R. Gallon (eds.) Biochemistry of the algae and cyanobacteria. Proc. Phytochem. Soc. Eur., Clarendon Press, Oxford, pp. 131–145.

    Google Scholar 

  • Miller, A.G., Espie, G.S., and Canvin, D.T. (1988) ‘Active transport of inorganic carbon increases the rate of O2 photoreduction by the cyanobacterium Synechococcus UTEX 625’ Plant Physiol. 88, 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C., Michihata, F. and Asada, K. (1991) ‘Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria’ Plant Cell Physiol. 32, 33–43.

    CAS  Google Scholar 

  • Ohki, K., Falkowski, P.G., Rueter, J.G., and Fujita, Y. (1991) ‘Experimental study of the marine cyanophyte Trichodesmium sp., a nitrogen-fixing phytoplankton in tropical and subtropical sea area’, in J. Mauchline and T. Nemoto (eds.), Marine Biology, Its Accomplishment and Future Prospect, Proc. 5th Symp. Intern. Prize Biol., Hokusensha, Tokyo.

    Google Scholar 

  • Ohki, K. and Fujita, Y. (1988) ‘Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions’ Mar. Biol. 98, 111–114.

    Article  CAS  Google Scholar 

  • Paerl, H.W. and Bebout, B. (1988) ‘Direct measurement of O2-epleted microzones in marine Oscillatoria: relation to N2 fixation’ Science 241, 442–445.

    Article  PubMed  CAS  Google Scholar 

  • Radmer, R. and Kok, B. (1976) ‘Photoreduction of O2 primes and replaces CO2 assimilation’ Plant Physiol. 58, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Radmer, R. and Ollinger, O. (1980) ‘Measurement of the oxygen cycle: the mass spectrometric analysis of gases dissolved in a liquid phase’ Methods Enzymol. 69, 547–560.

    Article  CAS  Google Scholar 

  • Raven, J.A. (1985) ‘The CO2 concentrating mechanism’ in, W.J. Lucas and J.A. Berry (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms. Am. Soc. Plant Physiol., Rockville, pp. 67–82.

    Google Scholar 

  • Renström, E. and Bergman, B. (1989) ‘Glycolate metabolism in cyanobacteria I. glycolate excretion and phosphoglycolate phosphatase activity’ Physiol. Plant. 75, 137–143.

    Article  Google Scholar 

  • Robinson, J.M. (1988) ‘Does O2 photoreduction occur within chloroplasts in vivo?’ Physiol. Plant. 72, 666–680.

    Article  CAS  Google Scholar 

  • Saino, T. and Hattori, A. (1982) ‘Aerobic nitrogen fixation by the marine non-heterocystous cyanobacterium Trichodesmium (Oscillatoria) spp.: its protective mechanism against oxygen’ Mar. Biol. 70, 251–254.

    Article  Google Scholar 

  • Scherer, S. (1990) ‘Do photosynthetic and respiratory electron transport chains share redox proteins?’ Trends Biochem. Sci. 15, 458–462.

    Article  PubMed  Google Scholar 

  • Walsby, A.E. (1986) ‘Finding a time and a place’ Science 323, 667.

    Google Scholar 

  • Weis, E. and Lechtenberg, D. (1989) ‘Fluorescence analysis during steady-state photosynthesis’ Phil. Trans. R. Soc. Lond. B 323, 253–268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kana, T.M. (1992). Oxygen Cycling in Cyanobacteria, with Specific Reference to Oxygen Protection in Trichodesmium spp.. In: Carpenter, E.J., Capone, D.G., Rueter, J.G. (eds) Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. NATO ASI Series, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7977-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7977-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4126-5

  • Online ISBN: 978-94-015-7977-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics