Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 362))

Abstract

Trichodesmium is a major component of the global carbon cycle, but because of its sporadic occurrence it is extremely difficult to study by conventional shipboard methods. Information on the variability and spatial extent of this cyanobacterium is essential for calculation of its contribution to carbon and nitrogen fluxes. Intense surface blooms of Trichodesmium have been observed in satellite imagery from the Coastal Zone Color Scanner and in color photography from the space shuttle, but such reports are rare. To date it is difficult to differentiate Trichodesmium from other species by remote sensing measurements alone.

A consideration of the spectral reflectance and absorption measurements on natural and concentrated populations of Trichodesmium shows that at moderate concentrations, Trichodesmium and other cyanobacteria should be distinguishable from diatoms and dinoflagellates where high spectral resolution data are available. This paper discusses optical data collected from freshly collected Trichodesmium, focussing on narrow spectral absorption features resulting from the nitrogen containing pigments at 495 and 545 nm by phycoerythrin, and at 625 nm by phycocyanin. The specific absorption spectra are used in an optical model to generate reflectance spectra corresponding to different concentrations of Trichodesmium. The detection limits of algorithms based on these features are assessed. The model spectra are also compared to actual reflectance data from a series-dilution experiment. This treatment illustrates the potential to use existing and planned airborne and space craft water color sensors to map Trichodesmium and other cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borstad, G. A. (1978)’ some aspects of the biology and hydrography of Trichodesmium (Cyanophyta) in the Western Tropical Atlantic near Barbados, West Indies’ PhD Thesis, McGill University, Montreal, Canada, 234p.

    Google Scholar 

  • Borstad, G. A. and D. A. Hill (1989) ‘Using visible range imaging spectrometers to map ocean phenomena’ Paper presented at International Congress on Optical Science and Engineering, Paris, France, 24–29 April, 1989.

    Google Scholar 

  • Borstad, G. A., H. R. Edel, J. F. R. Gower, and A. B. Hollinger (1985) ‘Analysis of test and flight data from the Fluorescence Line Imager’, Canadian Special Publication of Fisheries and Aquatic Sciences, No. 83, 38pp.

    Google Scholar 

  • Bricaud, A., A. Morel, and L. Prieur (1983) ‘Optical efficiency factors for some phytoplankters’, Limnol. Oceanogr., 28, 816–832.

    Article  Google Scholar 

  • Bricaud, A. and D. Stramski (1990) ‘Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison of the Peru upwelling area and the Sargasso Sea.’ Limnol. Ocean. 35, 562–582.

    Article  CAS  Google Scholar 

  • Carder, K. L. and R. G. Steward (1985) ‘A remote sensing reflectance model of a red tide dinoflagellate off west Florida’, Limnol. Oceanogr. 30, 286–298.

    Article  Google Scholar 

  • Carpenter, E. J. (1983) ‘Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s oceans’, p 65–103. in E. J. Carpenter and D. G. Capone (eds), Nitrogen in the Marine Environment, Academic Press, New York, 900pp.

    Google Scholar 

  • Creagh, S. (1986) ‘Review of literature concerning blue-green algae of the genus Trichodesmium (Order Nostocales: Family Oscillatoriaceae)’, Bulletin 197, Department of Conservation and Environment, 1 Mount St., Perth, Western Australia 6000. 33p.

    Google Scholar 

  • Daniel, A., A. K. Nagabhushanum and P. Krishnamurthy (1976) ‘On the occurrence of “greenish yellow water” phenomenon caused by the swarming of Trichodesmium erythraeum Ehrenburg, in the sea off Madras and its effect on the local marine fauna’, J. Bombay Natural Hist. Soc. 75, 88–95.

    Google Scholar 

  • Devassy, V. P., P. M. A. Bhattathiri and S. Z. Quasim (1978) ‘Trichodesmium phenomenon’, Indian J. Mar. Sci. 7, 168–186.

    Google Scholar 

  • Dubinsky, Z., T. Berman and F. Schanz (1984) ‘Field experiments for in situ measurement of photosythetic efficiency and quantum yield’, J. Plankton Res. 6, 339–349.

    Article  CAS  Google Scholar 

  • Dupouy, C., M. Petit and Y. Dandonneau (1988) ‘Satellite detected cyanobacteria bloom in the southwestern tropical Pacific: implication for oceanic nitrogen fixation’, Int. J. Remote Sensing 9, 389–396.

    Article  Google Scholar 

  • Eleuterius, L., H. Perry, C. Eleuterius, J. Warren and J. Caldwell (1981) ‘Causative analysis on a nearshore bloom of Oscillatoria erythrea (Trichodesmium) in the northern Gulf of Mexico’, Northeast Gulf. Sci. 5, 1–12.

    Google Scholar 

  • Fischer, J., and U. Kronfeld (1990) ‘Sun-stimulated chlorophyll fluorescence. 1: Influence of ocean properties’, Int. J. Remote Sensing, 11, 2125–2147.

    Article  Google Scholar 

  • Gordon, H. R., D. K. dark, J. M. Brown, O. B. Brown, R. H. Evans and Broenkow (1983), “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparisons of ship determinations and CZCS estimates,” Applied Optics, 22, 20–37.

    Article  PubMed  CAS  Google Scholar 

  • Gower, J. F. R. and G. A. Borstad (1991) ‘An exceptional red tide event on the west coast of Canada mapped with the AVHRR and imaging spectroscopy’. Proceedings of International Geophysical and Remote Sensing Society conference IGARSS’91 at Helsinki, Finland, June 1991.

    Google Scholar 

  • Gower, J. F. R. and G. A. Borstad (1981) ‘Use of the in-vivo fluorescence line at 685 nm for remote sensing surveys of chlorophyll a’, in J.F.R. Gower (ed) Oceanography from Space, Plenum Press, 329-338.

    Google Scholar 

  • Hoge, F. E. and R. N. Swift (1983) ‘Airborne dual laser excitation and mapping of phytoplankton photo-pigments in a Gulf Stream warm core ring’, Applied Optics 22, 2272.

    Article  PubMed  CAS  Google Scholar 

  • Horne, A. J. and R. C. Wrigley (1975) ‘The use of remote sensing to detect how wind influences blue-green algal distributions’ Verh. Int. Ver. Limnol., 19, 784–792.

    Google Scholar 

  • Horstmann, U., K. A. Ulbricht and D. Schmidt (1978) ‘Detection of eutrophication processes from air and space’, in Proceedings XII International Symposium of Remote Sensing of Environment, Manila, Philippines, pp 1379-1389.

    Google Scholar 

  • Hovis W. A., D. K. Clark, F. Anderson, R. W. Austen, W. H. Wilson, E. J. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley and C. S. Yentsch (1980) ‘Nimbus-7 Coastal Zone Color Scanner: System description and initial imagery’, Science, 210, 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, B. B. and D. J. Des Marais (1988) ‘Optical properties of benthic photosythetic communities: fiber optic studies of cyanobacterial mats’ Limnol. Ocean. 33, 99–113.

    Article  CAS  Google Scholar 

  • Kiefer, D. A. and J. B. Soohoo (1982) ‘Spectral absorption by marine particles of coastal waters of Baja California’ Limnol. Oceanogr. 27, 492–499.

    Article  Google Scholar 

  • Kiefer, D. A., R. J. Olson and W. H. Wilson (1979) Reflectance spectroscopy of marine phytoplankton. Part 1. Optical properties as related to age and growth rate’, Limnol. Oceanogr. 24, 673–682.

    Article  Google Scholar 

  • Kuchler, D. A. and D. B. Jupp (1988) ‘Shuttle photograph captures massive phytoplankton bloom in the Great Barrier Reef’, Int. J. Remote Sensing 9, 1299–1301.

    Article  Google Scholar 

  • Kuchler, D. A. and N. P. Arnold (1986) ‘Identification and characterization of a massive phytoplankton bloom within the Capricorn Channel, Great Barrier Reef, Australia’, Proc. Beijing Int. Symp. Remote Sensing, Beijing, PRC, November 18-22, 1986.

    Google Scholar 

  • Lewis, M. R., O. Ulloa and T. Platt (1988) ‘Photosynthetic action, absorption, and quantum yield spectra for a natural population of Oscillatoria in the North Atlantic’, Limnol. Oceanogr., 33, 92–98.

    Article  Google Scholar 

  • McCarthy, J. J. and E. J. Carpenter (1979) ‘Oscillatoria (Trichodesmium) thiebautii (Cyanophyta) in the central North Atlantic Ocean’, J. Phycol. 15, 75–82.

    Article  CAS  Google Scholar 

  • Mitchell, B. G. and D. A. Kiefer (1988) ‘Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton’, Deep Sea Res. 35, 639–663.

    Article  CAS  Google Scholar 

  • Morel, A. (1980) ‘In-water and remote measurements of ocean color’, Boundary-Layer Meteorology, 18, 177–201.

    Article  Google Scholar 

  • Morel, A. and A. Bricaud (1981) ‘Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton’, Deep Sea Res. 35, 665–689.

    Google Scholar 

  • Morel, A., 1988, ‘Optical modelling of the upper ocean in relation to its biogenous matter content (Case 1 waters)’, J. Geophys. Res., 93, 10749–10768.

    Article  Google Scholar 

  • Morel, A., and L. Prieur (1977) ‘Analysis of variations in ocean color’, Limnol. Oceanogr., 22, 709–722.

    Article  Google Scholar 

  • Neville, R. A., and J. F. R. Gower (1977) ‘Passive remote sensing of phytoplankton via chlorophyll a fluorescence’, Jour. Geophys. Res. 82, 3487–3493.

    Article  Google Scholar 

  • Ohki, K. and Y. Fujita (1982). Laboratory culture of Trichodesmium thiebautii: conditions for unialgal culture’, Mar. Ecol. Prog. Ser. 7, 185–190.

    Article  Google Scholar 

  • Ohki, K., J. G. Rueter and Y. Fujita (1986) ‘Cultures of the pelagic cyanophytes Trichodesmium erythraeum and T. thiebautii in synthetic medium’, Marine Biology, 91, 9–13.

    Article  Google Scholar 

  • Prieur, L., and S. Sathyendranath (1981) ‘An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials’, 1981, Limnol. Oceanogr., 26, 671–689.

    Article  Google Scholar 

  • Sathyendranath, S., L. Lazzara and L. Prieur (1987) ‘Variations in the spectral values of specific absorption of phytoplankton’, Limnol. Oceanogr., 32, 403–415.

    Article  CAS  Google Scholar 

  • Sathyendranath, S., L. Prieur, and A. Morel (1989) ‘A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters’, Int. J. Remote Sensing, 10, 1373–1394.

    Article  Google Scholar 

  • Shimura, S. and Y. Fujita (1975) ‘Phycoerythrin and photosynthesis of the pelagic blue-green alga Trichodesmium thiebautii in the waters of the Kuroshio, Japan’, Mar. Biol. 31, 121–128.

    Article  CAS  Google Scholar 

  • Spitzer, D and R. W. J. Dirks (1986) ‘Chlorophyll fluorescence effects in the red part of reflectance spectra of natural waters’, Continental Shelf Res., 6, 385–395.

    Article  CAS  Google Scholar 

  • Ulbricht, K. A. (1983) ‘Landsat image of blue green algae in the Baltic sea. Int J. Remote Sensing’, 4, 801–802.

    Google Scholar 

  • Ulbricht, K. A. (1983) ‘Comparative experimental study on the use of original and compressed multispectral Landsat data for applied research’, Int. J. Remote Sensing, 4, 571–582.

    Article  Google Scholar 

  • Vane, G. A., M. Chrisp, H. Enmark, S. Macenka and J. Solomon (1984) ‘Airborne Visible/Infrared Imaging Spectrometer: An advanced tool for earth remote sensing’ Proceedings of the International Geophysical and Remote Sensing Society conference IGARSS’84, SP215, 751-759.

    Google Scholar 

  • Walker, G. A. H., V. I. Buchholz, D. Camp, B. Isherwood, J. Glaspey, R. Coutts, A. Condal and J.F.R. Gower (1974) ‘A compact multi-channel spectrometer for field use’, Rev. Sci. Instrum. 45, 1349–1352.

    Article  Google Scholar 

  • Walsby, A. E. (1978) ‘The properties and bouyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg’, Br. Phycol. J., 13, 103–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borstad, G.A., Carpenter, E.J., Gower, J.F.R. (1992). Development of Algorithms for Remote Sensing of Trichodesmium Blooms. In: Carpenter, E.J., Capone, D.G., Rueter, J.G. (eds) Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. NATO ASI Series, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7977-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7977-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4126-5

  • Online ISBN: 978-94-015-7977-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics