Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 10))

Abstract

Culture media from a number of rhizobial strains, including the type-strains of 8 major cross-inoculation groups, were analyzed for cytokinin content. Cytokinins were partially purified by chromatography on Amberlite XAD-2, then on Sephadex LH-20. The tobacco callus assay, HPLC and/or immunoassay were used for cytokinin analysis. All strains of rhizobia examined produced at least 2 cytokinin-active compounds, with total cytokinin activity ranging from 1 to several µg kinetin equivalents per liter of culture filtrate. There were both qualitative and quantitative differences between rhizobial species. The cytokinin profiles of most strains included zeatin or its derivatives. Addition of adenine, seed extract or flavonoid inducers to the culture medium altered cytokinin synthesis. Preliminary genetic data do not support nod gene involvement in cytokinin synthesis under noninducing conditions. Growth pouch experiments showed increased nodulation of soybean plants treated with trans-zeatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyoshi, D. E., D. A. Regier and M. P. Gordon. (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J. Bacteriol. 169: 4242–4248.

    PubMed  CAS  Google Scholar 

  2. Arora, N., F. Skoog and O. N. Allen. (1959) Kinetin induced pseudonodules on tobacco mots. Am. J. Bot. 46: 610–613.

    Article  CAS  Google Scholar 

  3. Bauer, W. D., T. Bhuvaneswari, H. E. Calvert, I. J. Law., N. S. A. Malik and S. J. Vesper,. (1985) Recognition and infection by slow-growing rhizobia, in H. J. Evans, P. J. Bottomly and W. E. Newton (eds.) Nitrogen Fixation Research Progress, Martinus Nijhoff Publishers, Dordrecht, pp. 247–253.

    Chapter  Google Scholar 

  4. Bhuvaneswari, T. V., B. G. Turgeon and W. D. Bauer. (1980) Early events in the infection of soybean (Glycine max L. Merr.) by Rhizobium japonicum. Plant Physiol. 66: 1027–1031.

    Article  PubMed  CAS  Google Scholar 

  5. Blum, P. H. and B. N. Ames. (1989) Immunochemical identification of a tRNAindependent cytokinin-like compound in Salmonella typhimurium. Biochim. Biophys. Acta 1007: 196–202.

    Article  PubMed  CAS  Google Scholar 

  6. Castle, L. A. and R. O. Morris. (1988) Investigations into the role of tzs in Agrobacterium tumefaciens mediated plant transformation. Abstracts, 13th Int. Conf. on Plant Growth Substances, Calgary, Canada.

    Google Scholar 

  7. Lerouge, P., P. Roche, C Faucher, F. Maillet, G. Truchet, J. C. Prome and J. Denarie. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.

    Article  PubMed  CAS  Google Scholar 

  8. Letham, D. S., R. Zhang, S. Singh, L. M. S. Palni, C. W. Parker, M. N. Upadhyaya and P. J. Dart. (1988) Xylem-translocated cytokinin - metabolism and function. Abstracts, 13th Int. Conf. on Plant Growth Substances, Calgary, Canada.

    Google Scholar 

  9. Long, S. R. and J. Cooper. (1988) Overview of symbiosis, in R. Palacios and D.P.S. Verma (eds.), Molecular Genetics of Plant-Microbe Interactions, APS Press, St. Paul, MN, pp. 163–178.

    Google Scholar 

  10. Nirunsuksiri, W. and C. Sengupta-Gopalan. (1988) Characterization and regulation of an early nodulin gene in soybeans, in N. T. Keen, T. Kosuge, L.L. Wallings (eds.), Physiology and Biochemistry of Plant Microbial Interactions, American Society of Plant Physiologists, Rockville, MD, pp.171–172.

    Google Scholar 

  11. Sturtevant, D. B. and B. J. Taller. (1989). Cytokinin production by Bradyrhizobium japonicum. Plant Physiol. 89: 1247–52.

    Article  PubMed  CAS  Google Scholar 

  12. Yahalom, E., Y. Okon and A. Dovrat. (1990). Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can. J. Microbiol. 36: 10–14.

    Article  Google Scholar 

  13. Zahn, X., D.A. Jones and A. Kerr. (1990) The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Mol. Biol. 14: 785–792

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taller, B.J., Sturtevant, D.B. (1991). Cytokinin Production by Rhizobia. In: Hennecke, H., Verma, D.P.S. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1. Current Plant Science and Biotechnology in Agriculture, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7934-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7934-6_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4083-1

  • Online ISBN: 978-94-015-7934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics