Skip to main content

Abstract

For over a century, Rhizobium species have been studied due to their ability to establish nitrogen-fixing symbioses with leguminous plants. During the past decade, intensive biochemical and molecular genetics studies have paved the way for an intimate understanding of the nodulation and nitrogen fixation processes (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. - Long, S.R. (1989) ‘Rhizobium genetics’, Ann. Rev. Genet. 23, 483–506.

    Article  PubMed  CAS  Google Scholar 

  2. - Martinez, E., Romero, D., and Palacios, R. (1990) ‘The Rhizobium genome’. Crit. Revs. in Plant Sci. 9, 59–93.

    Article  CAS  Google Scholar 

  3. - Prakash, R.K., and Atherly, A.G. (1986) ‘Plasmids of Rhizobium and their role in symbiotic nitrogen fixation’, Int. Rev. Cytol. 104, 1–24.

    Article  CAS  Google Scholar 

  4. - Flores, M., González, V., Brom, S., Martinez, E., Pinero, D., Romero, D., Dávila, G., and Palacios, R. (1987) ‘Reiterated DNA sequences in Rhizobium and Agrobacterium spp.’, J. Bacteriol. 169, 5782–5788.

    PubMed  CAS  Google Scholar 

  5. - Quinto, C., de la Vega, H., Flores, M., Leemans, J., Cevallos, M. A., Pardo, M.A., Azpiroz, R., Girard, M.L., Calva, E., and Palacios, R. (1985) ‘Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli’, Proc. Natl. Acad. Sci. U.S.A. 82, 1170–1174.

    Article  PubMed  CAS  Google Scholar 

  6. - Honma, M.A., and Ausubel, F.M. (1987) ‘Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene’, Proc. Natl. Acad. Sci. U.S.A. 84, 8558–8562.

    Article  PubMed  CAS  Google Scholar 

  7. - Gyorgypal, Z., Iyer, N., and Kondorosi, A. (1988) ‘Three regulatory nodD alleles of diverged flavonoid specificity are involved in host-dependent nodulation by Rhizobium meliloti’, Mol. Gen. Genet. 212, 85–92.

    Article  CAS  Google Scholar 

  8. - Renalier, M.H., Batut, J., Ghai, J., Terzaghi, B., Gherardi, M., David, M., Garnerone, A.M., Vasse, J., Truchet, G., Hughet, T., and Boistard, P. (1987) ‘A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional gene repeat and a nod locus’, J. Bacteriol. 169, 2231–2238.

    PubMed  CAS  Google Scholar 

  9. - Flores, M., González, V., Pardo, M.A., Leija, A., Martinez, E., Romero, D., Pinero, D., Dávila, G., and Palacios, R. (1988) ‘Genomic instability in Rhizobium phaseoli’, J. Bacteriol. 170, 1191–1196.

    PubMed  CAS  Google Scholar 

  10. - Djordjevic, M.A., Zurkowski, W., and Rolfe, B.G. (1982) ‘Plasmids and stability of symbiotic properties in Rhizobium trifolii’, J. Bacteriol. 151, 560–568.

    PubMed  CAS  Google Scholar 

  11. - Soberón-Chávez, G., Nájera, R., Olivera, H., and Segovia, L. (1986) ‘Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid’, J. Bacteriol. 167, 487–491.

    PubMed  Google Scholar 

  12. - Hahn, M., and Hennecke, H. (1987) ‘Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric acumulation of reiterated sequences’, Appl. Environ. Microbiol. 53, 2247–2252.

    PubMed  CAS  Google Scholar 

  13. - Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T., and Kado, C.I. (1985) ‘Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria’, J. Bacteriol. 164, 918–921.

    PubMed  CAS  Google Scholar 

  14. - Mortlock, R.P. (1982) ‘Metabolic acquisitions through laboratory selection’, Ann. Rev. Microbiol. 36, 259–284.

    Article  CAS  Google Scholar 

  15. - Sonti, R.V., and Roth, J.R. (1989) ‘Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources’, Genetics 123, 19–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romero, D. et al. (1991). Geonomic Instability in Rhizobium: Friend or Foe?. In: Hennecke, H., Verma, D.P.S. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1. Current Plant Science and Biotechnology in Agriculture, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7934-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7934-6_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4083-1

  • Online ISBN: 978-94-015-7934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics