Skip to main content

Vortex breakdown: a coherent transition trigger in concentrated vortices

  • Chapter
Turbulence and Coherent Structures

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 2))

Abstract

Vortex breakdowns are organized structures that usually lead to turbulent flow in vortices. They are among the many kinds of large amplitude disturbances that are possible in concentrated vortices having a streaming component of velocity along the vortex axis. While there is no universal agreement on a definition of “vortex breakdown”, most observers associate the term with a condition in which there is a rapid axial deceleration of the fluid leading to a stagnation point and region of reversed axial flow. By rapid, I mean that the fluid on the vortex axis is brought to rest in distances comparable to the vortex core diameter. Since this distance is small compared to the length scales of interactions generally taking place in concentrated vortices, the occurrence of vortex breakdown appears as a dramatic event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon, J. Fluid Mech., 14, 593–629.

    Article  MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown, J. Fluid Mech., 28, 65–84.

    Article  ADS  MATH  Google Scholar 

  • Erickson, G.E. and Gilbert, W.P. 1983 Experimental investigation of forebody and wing leading-edge vortex interactions, In: Aerodynamics of Vortical Type Flows in Three Dimensions, A. D. Young, ed., AGARD Conference Proceedings No. 342 ( NATO ), Paper 11.

    Google Scholar 

  • Escudier, M.P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall, Exp. Fluids, 2, 189–196.

    Article  Google Scholar 

  • Escudier, M.P. 1988 Vortex breakdown: Observations and explanations, in Prog. Aero. Sciences, 25, 189–229.

    Google Scholar 

  • Faler, J.H. and Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown, Phys. Fluids, 20, 1385–1400.

    Article  ADS  Google Scholar 

  • Faler, J.H. and Leibovich, S. 1978 An experimental map of the internal structure of a vortex breakdown, J. Fluid Mech., 86, 313–335.

    Article  ADS  Google Scholar 

  • Fiedler, B.H. and Rotunno, R. 1986 A theory for the maximum wind-speeds in tornado-like vortices, J. Atmos. Sci., 43, 2328–2340.

    Article  ADS  Google Scholar 

  • Garg, A.K. & Leibovich, S. 1979 Spectral characteristics of vortex breakdown flowfields, Phys. Fluids, 22, 2053–2064.

    Article  ADS  Google Scholar 

  • Gouldin, F.C., Depsky, J.S. and Lee, S.L. 1985 Velocity field characteristics of a swirling flow combustor, AIAA J., 23, 95–102.

    Article  ADS  Google Scholar 

  • Hall, M. G. 1966 The structure of concentrated vortex cores, in Prog in Aero Sci., 7, ed. by D. Kiichemann, 53–110.

    Google Scholar 

  • Hall, M. G. 1972 Vortex breakdown, Ann. Rev. Fluid Mech., 4, 195–218.

    Article  ADS  Google Scholar 

  • Hopfinger, E.J., Browand, F.K. and Gagne, Y. 1982 Turbulence and waves in a rotating tank, J. Fluid Mech., 125, 505–534.

    Article  ADS  Google Scholar 

  • Keller, J.J., Egli, W. and Exley, J. 1985 Force-and loss-free transitions between flow states, ZAMP, 36, 854–889.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Keller, J.J., Egli, W. and Althaus, R. 1988 Vortex breakdown as a fundamental element of vortex dynamics, ZAMP, 39, 404–439.

    Article  ADS  MATH  Google Scholar 

  • Lambourne, N.C. and Bryer, D.W. 1961 The bursting of leading edge vortices; Some observations and discussion of the phenomenon, Aero. Res. Coun., RM 3282.

    Google Scholar 

  • Leibovich, S. 1970 Weakly nonlinear waves in rotating fluids, J. Fluid Mech., 42, 803–822.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leibovich, S. 1978 The structure of vortex breakdown, Ann. Rev. Fluid Mech., 10, 221–246.

    Article  ADS  Google Scholar 

  • Leibovich, S. 1979 Waves in parallel or swirling stratified shear flows, J. Fluid Mech., 93, 401–412.

    Article  ADS  MATH  Google Scholar 

  • Leibovich, S. 1983 Vortex stability and breakdown. In: Aerodynamics of Vortical Type Flows in Three Dimensions, A. D. Young, ed., AGARD Conference Proceedings No. 342 ( NATO ), Paper 23.

    Google Scholar 

  • Leibovich, S. 1984 Vortex stability and breakdown: Survey and extension, AIAA J., 22, 1192–1206.

    Article  ADS  Google Scholar 

  • Leibovich, S., Brown, S.N., & Patel, Y. 1986 Bending waves on inviscid columnar vortices, J. Fluid Mech., 173, 595–624.

    Article  ADS  MATH  Google Scholar 

  • Leibovich, S. and Kribus, A. 1990 Large amplitude wavetrains and solitary waves in vortices, J. Fluid Mech. (In press)

    Google Scholar 

  • Leibovich, S. and Randall, J.D. 1973 Amplification and decay of long nonlinear waves, J. Fluid Mech., 53, 481–493.

    Article  ADS  Google Scholar 

  • Leibovich, S. and Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices, J. Fluid Mech., 126, 335–356.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lugt, H.J. & Abboud, M. 1987 Axisymmetric vortex breakdown in rotating fluid within a container, J. Fluid Mech., 179, 179–200.

    Article  ADS  MATH  Google Scholar 

  • Maxworthy, T., Mory, & Hopfinger, E. 1983 Waves on vortex cores and their relation to vortex breakdown. In: Aerodynamics of Vortical Type Flows in Three Dimensions, A. D. Young, ed., AGARD Conference Proceedings No. 342 (NATO), Paper 29.

    Google Scholar 

  • Maxworthy, T. 1973 A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices, J. Atmos. Sci., 30, 1717–1722.

    Article  ADS  Google Scholar 

  • Maxworthy, T., Hopfinger, E.J., and Redekopp, L.G. 1985 Wave motions on vortex cores, J. Fluid Mech., 151, 141–165.

    Google Scholar 

  • Polhamus, E.C. 1986 Vortex lift research: Early contributions and some current challenges, in Vortex Flow Aerodynamics I, ed. by J. F. Campbell, R. F. Osborn, and J.T. Foughner, Jr., NASA CP-2416, pp. 1–30.

    Google Scholar 

  • Pritchard, W.G. 1970 Solitary waves in rotating fluids, J. Fluid Mech., 42, 61–83.

    Article  ADS  Google Scholar 

  • Randall, J. D. & Leibovich, S. 1973 The critical state: A trapped wave model of vortex breakdown, J. Fluid Mech., 53, 481–493.

    Google Scholar 

  • Ronnenberg, B. 1977 Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationären zylinder-symmetrischen Drehströmung mit einem Rüchstromgebiet. Max- Planck Inst. fir Strömungsforschung, Göttingen, Bericht 20.

    Google Scholar 

  • Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns, J. Fluid Mech., 45, 545–559.

    Article  ADS  Google Scholar 

  • Peake, D.J. and Tobak, M. 1983 On issues concerning flow separation and vortical flows in three dimensions. In: Aerodynamics of Vortical Type Flows in Three Dimensions, A. D. Young, ed., AGARD Conference Proceedings No. 342 ( NATO ), Paper 1.

    Google Scholar 

  • Tsai, C-Y., and Widnall, S.E. 1980 Examination of group-velocity criterion for breakdown of vortex flow in a divergent duct, Phys. Fluids, 23, 864–870.

    Article  MathSciNet  ADS  Google Scholar 

  • Vogel, H.U. 1968 Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Geh use mit darin rotierender Scheibe, Max-Planck Inst. fair Strömungsforschung, Göttingen, Bericht 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leibovich, S. (1991). Vortex breakdown: a coherent transition trigger in concentrated vortices. In: Metais, O., Lesieur, M. (eds) Turbulence and Coherent Structures. Fluid Mechanics and Its Applications, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7904-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7904-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4063-3

  • Online ISBN: 978-94-015-7904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics