Skip to main content

Intermittent structure of dissipation in isotropic turbulence viewed from a direct simulation

  • Chapter
Turbulence and Coherent Structures

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 2))

Abstract

The multifractal nature of isotropic turbulence is numerically investigated. A decaying isotropic turbulence, realized on a 1283 computergrid by the spectral method, fully develops after a proper time, revealing the Kolmogorov energy spectrum in a certain inertial range of wavenumber. At this state of turbulence, the generalized dimensions D q with respect to dissipation measure in space and the corresponding intermittency exponents µ q are calculated for −30 ≤q≤30, based on the 3D dissipation field. Through a contact transformation of the continuous D q , such an f − a spectrum is obtained that is well known in the theory of chaos. Our result shows a multifractal distribution in space of the scaling index a, comparable with, but somewhat distinct from, the recent experiment and model of Meneveau and Sreenivasan. A similar investigation of a passive scalar field is added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, L. C., Phillips, R. L., Shivamoggi, B. K., Beck, J. K. and Joshi, M. L. 1989 Phys. Fluids Al 999.

    Google Scholar 

  • Anselmet, F., Gagne, Y., Hopfinger, E. J. and Antonia, R.A. 1984 J. Fluid Mech. 140, 63.

    Article  ADS  Google Scholar 

  • Antonia, R. A., Satyapralcash, B. R. and Hussain, A. K. M. 1982 J. Fluid Mech. 119, 55.

    Article  ADS  Google Scholar 

  • Bacry, E.,Frisch, U., Gagne, Y. and Hopfinger, E. 1989 Spoken at Turbulence 89; Abstracts, p. 145.

    Google Scholar 

  • Benzi, R., Paradin, G., Parisi, G and Vulpiani, A. 1984 J. Phys. A17, 3521.

    MathSciNet  ADS  Google Scholar 

  • Frisch, U. 1985 In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghil), p. 71. North-Holland.

    Google Scholar 

  • Frisch, U and Parisi, G. 1985 ibid,p. 84.

    Google Scholar 

  • Frisch, U., Sulem, P. L. and Nelkin, M. 1978 J. Fluid Mech. 87, 719.

    Article  ADS  MATH  Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. and Shraiman, B. I. 1986 Phys. Rev. A33, 1141.

    Google Scholar 

  • Hentschel, H. G. E. and Procaccia, I. 1983 Physica 8D, 435.

    MathSciNet  MATH  Google Scholar 

  • Hosokawa, I. 1989 Phys. Fluids Al,186.

    Google Scholar 

  • Hosokawa, I. andYamamoto, K. 1989 J. Phys. Soc. Japan 58 20.

    Google Scholar 

  • Hosokawa, I. and Yamamoto, K. 1990 J. Phys. Soc. Japan 59, 401.

    Article  ADS  Google Scholar 

  • Jensen, M. H. 1987 In International Conference on the Physics of Chaos and System far from Equilibrium (ed. M. Duang-Van), p. 487. North-Holland.

    Google Scholar 

  • Jensen, M. H., Kadanoff, L. P. andLibchaber, A. 1985 Phys. Rev. Lett. 55, 2798.

    Article  MathSciNet  ADS  Google Scholar 

  • Mandelbrot, B. 1977 Fractals: Form, Chance and Dimension. W. H. Freeman.

    Google Scholar 

  • Meneveau, C. and Sreenivasan, K. R. 1987a Nucl. Phys. B(Proc. Suppl.) 2, 49.

    Google Scholar 

  • Meneveau, C. and Sreenivasan, K. R. 1987b Phys. Rev. Lett. 59, 1424.

    Article  ADS  Google Scholar 

  • Monin, A. S. and Yaglom, A. M. 1975 Statistical Fluid Mechanics,Vol. 2., Chap. 8. MIT Press.

    Google Scholar 

  • Nakano, T. and Nelkin, M. 1985 Phys. Rev. A31, 1980

    ADS  Google Scholar 

  • Novikov, E. A. 1971 Appl. Math. Mech. 35, 231.

    Article  MATH  Google Scholar 

  • Orszag, S. A. and Patterson, Jr., G. S. 1972 Phys. Rev. Lett. 28, 76.

    Article  ADS  Google Scholar 

  • Prasad, R. P., Meneveau, C. and Sreenivasan, K. R. 1988 Phys. Rev. Lett. 61, 74.

    Google Scholar 

  • Vincent, A. and Menegucci, M. 1989 Spoken at Turbulence 89; Abstractsp. 231.

    Google Scholar 

  • Yamamoto, K. and Hosokawa, I. 1988 J. Phys. Soc. Japan 57, 1532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hosokawa, I., Yamamoto, K. (1991). Intermittent structure of dissipation in isotropic turbulence viewed from a direct simulation. In: Metais, O., Lesieur, M. (eds) Turbulence and Coherent Structures. Fluid Mechanics and Its Applications, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7904-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7904-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4063-3

  • Online ISBN: 978-94-015-7904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics