Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 184))

Abstract

A transition metal tip consisting of a single tungsten atom adsorbed on a W(110) surface is modelled. Chemisorpion theory is applied to treat the interaction of the tip atom with the flat W(110)-surface. The basis set on the tip atom includes 6s-, 6p- and 5d-orbitals. The importance of the d-electrons for the tunneling to an Al(111)-surface is investigated. Inclusion of the d- orbitals affects strongly the local electronic structure and modifies the current. For short distances a significant part of the total tunnel current flows directly via the tip d-orbitals. The theory is used to investigate the ‘barrier height’ of the clean surface. A corrugation of the Al(111)-surface is obtained in STM-theory, if a elastic deformation of the tip is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Tersoff and D.R. Hamann, Phys. Rev. Lett. 50, 1998 (1983);

    Article  CAS  Google Scholar 

  2. J. Tersoff and D.R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  CAS  Google Scholar 

  3. N.D. Lang, Phys. Rev. Lett. 55, 230 (1985);

    Article  CAS  Google Scholar 

  4. N. D. Lang, Phys. Rev. Lett., 56 (1986) 164;

    Article  Google Scholar 

  5. N. D. Lang, Phys. Rev. B34, 5547 (1986).

    Google Scholar 

  6. J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).

    Article  CAS  Google Scholar 

  7. G. Doyen, D. Drakova, E. Kopatzki and R.J. Behm, J. Vac. Sci. Technol. A6, 327 (1988).

    Article  CAS  Google Scholar 

  8. E. Kopatzki, G. Doyen, D. Drakova, and R.J. Behm, Journal of Microscopy, 151, 687 (1988).

    Article  Google Scholar 

  9. G. Doyen and D. Drakova, Surface Sci., 178, 375 (1986).

    Article  CAS  Google Scholar 

  10. J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Höfer, and R. J. Behm, Phys. Rev. Lett. 62, 59 (1989).

    Article  CAS  Google Scholar 

  11. J. Wintterlin, PhD-Thesis, Freie Universität Berlin, 1988.

    Google Scholar 

  12. D. Drakova, G. Doyen and F. von Trentini, Phys. Rev. B 32, 6399 (1985)

    Article  CAS  Google Scholar 

  13. D. Drakova, G. Doyen and R. Hübner, J. Chem. Phys., 89, 1725 (1988).

    Article  CAS  Google Scholar 

  14. G. Doyen and G. Ertl, Surface Sci., 65, 641, (1977);

    Article  CAS  Google Scholar 

  15. G. Doyen and G. Ertl, J. Chem. Phys., 68, 5417 (1978).

    Article  CAS  Google Scholar 

  16. J. Hölzl and F.K. Schulte, in: ‘Solid Surface Physics’, ed. G. Höhler, Springer Tracts in Modern Physics, Vol. 85,p. 1, 1979, Springer Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  17. B. A. Lippmann, Phys. Rev. Lett. 15, 11 (1965);

    Article  Google Scholar 

  18. B. A. Lippmann, Phys. Rev. Lett. 16, 135 (1966).

    Article  Google Scholar 

  19. P. Ehrenfest, Z. Physik, 45, 455 (1927).

    Article  Google Scholar 

  20. M. Gell-Mann and M.L. Goldberger, Phys. Rev. 91, 398 (1953).

    Article  CAS  Google Scholar 

  21. G. Doyen and D. Drakova, in preparation.

    Google Scholar 

  22. R. D. Levine, ‘Quantum Mechanics of Molecular Rate Processes’, Oxford University Press, Oxford (1969).

    Google Scholar 

  23. K. Mednick and L. Kleinman, Phys. Rev., B 22, 5768 (1980).

    Article  CAS  Google Scholar 

  24. J. P. Toennies and A. Lock, cited by J. Wintterlin, ref. [8].

    Google Scholar 

  25. J. G. Simmons, J. Appl. Phys., 34, 1793 (1963);

    Article  Google Scholar 

  26. J. G. Simmons, J. Appl. Phys., 34, 2581 (1963).

    Article  Google Scholar 

  27. N. D. Lang, Phys. Rev., B 37, 395 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doyen, G., Koetter, E., Barth, J., Drakova, D. (1990). Theory of tunneling from transition metal tips. In: Behm, R.J., Garcia, N., Rohrer, H. (eds) Scanning Tunneling Microscopy and Related Methods. NATO ASI Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7871-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7871-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4075-6

  • Online ISBN: 978-94-015-7871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics