Skip to main content

Surface Modification with the STM and the AFM

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 184))

Abstract

The Tunneling and Force Microscopes are superb instruments for imaging atomic and molecular structures. From the beginning it has been clear that they can be used to modify surfaces in various ways. In this article we review the conventional methods and compare these with potential for surface modification with the STM and AFM. We reach the conclusion that the new instruments can be used for microfabrication of structures on solid substrates with a resolution that is improved by “a factor of ten beyond the present capabilities.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig, G. and Rohrer, H. (1986) ‘Scanning tunneling microscopy’, IBM J. Research and Development 30, 355–369.

    CAS  Google Scholar 

  2. Binnig, G., Quate, C. F., and Gerber, Ch. (1986) ‘Atomic force microscope’, Physical Review Letters 56,930–933.

    Article  Google Scholar 

  3. Martin, Y., Rugar, D., and Wickramasinghe, H. K. (1988) ‘High-resolution magnetic imaging of domains in TbFe by force microscopy’, Applied Physics Letters 52, 244–246.

    Article  CAS  Google Scholar 

  4. Martin, Y., Abraham, D. W., and Wickramasinghe, H. K. (1988) ‘High-resolution capacitance measurement and potentiometry by force microscopy’, Applied Physics Letters 52, 1103–1105.

    Article  Google Scholar 

  5. Bard, A. J., Fan, F-R. F., and Kwala, J. (1989) ‘Scanning electrochemical microscopy, introduction and principles’, Analytical Chemistry 61, 132–138.

    Article  CAS  Google Scholar 

  6. Avouris, Ph. and Wolkow, R. (1989) ‘Atom-resolved surface chemistry studied by scanning tunneling microscopy and spectroscopy’, Physical Review B 39, 5091–5100.

    Article  CAS  Google Scholar 

  7. Schardt, B. C, Yau, S-L., and Rinaldi, F. (1989) ‘Atomic resolution imaging of adsorbates on metal surfaces in air: iodine adsorption on Pt(111)’, Science 243, 1050–1053.

    Article  CAS  Google Scholar 

  8. Ehrichs, E. E. and de Lozanne, A. L. This volume.

    Google Scholar 

  9. The New York Times, May 24, 1989.

    Google Scholar 

  10. Hatzakis, M. (1969) ‘Electron resists for microcircuit and mask production’, J. Electrochemical Society; Electrochemical Technology 116, 1033–1037.

    Article  CAS  Google Scholar 

  11. Broers, A. N., Harper, J. M. E., and Molzen, W. W. (1978) ‘250-Å linewidths with PMMA electron resist’, Applied Physics Letters 33, 392–394.

    Article  CAS  Google Scholar 

  12. Broers, A. N. (1981) ‘Resolution limits of PMMA resist for exposure with 50 kV electrons’, J. Electrochemical Society 128, 166.

    Article  CAS  Google Scholar 

  13. Howard, R. E., Liao, P. F., Skocpol, W. J., Jackel, L. D., and Craighead, H. G. (1983) ‘Microfabrication as a scientific tool’, Science 221, 117–121.

    Article  CAS  Google Scholar 

  14. Muray, A., Isaacson, M., and Adesida, I. (1984) ‘AIF3 — a new very high resolution electron beam resist’, Applied Physics Letters 45, 589–591.

    Article  CAS  Google Scholar 

  15. Newman, T. H., Williams, K. E., and Pease, R. F.W. (1987) ‘High resolution patterning system with a single bore objective lens’, J. Vacuum Science & Technology B 5, 88–91.

    Article  CAS  Google Scholar 

  16. Mackie, S. and Beaumont, S. P. (1985) ‘Materials and processes for nanometer lithography’, Solid State Technology 28, 117–122.

    CAS  Google Scholar 

  17. Howard, R. E., Hu, E. L., and Jackel, L. D. (1981) ‘Multilevel resist for lithography below 100 nm’, IEEE Transactions on Electron Devices ED-28, 1378–1381.

    Google Scholar 

  18. Broers, A. N. (1988) ‘Resolution limits for lithography’, Proceedings, Third International Conference on Scanning Tunneling Microscopy, Oxford, 4–8 July, 1988, p.S6, Royal Microscopical Society 23, Part 3, Supplement.

    Google Scholar 

  19. Keyes, R. W. (1988) ‘Miniaturization of electronics and its limits’, IBM Journal of Research and Development 32, 24–28.

    Article  CAS  Google Scholar 

  20. See, IBM J. Research and Development 30, July and September 1986.

    Google Scholar 

  21. Abraham, D. W., Mamin, H. J., Ganz, E., and Clarke, J. (1986) ‘Surface modification with the scanning tunneling microscope’, IBM J. Research and Development 30, 492–499.

    Article  CAS  Google Scholar 

  22. Ringger, M., Hidber, H. R., Schlögl, R., Oelhafen, P., and Güntherodt, H.-J. (1985) ‘Nanometer lithography with the scanning tunneling microscope’, Applied Physics Letters 46, 832–834.

    Article  CAS  Google Scholar 

  23. McCord, M. A. and Pease, R. F. W. (1986) ‘Lithography with the Scanning Tunneling Microscope’, J. Vacuum Science & Technology B 4, 86–88.

    Article  Google Scholar 

  24. Becker, R. S., Golovchenko, J. A., and Swartzentruber, B. S. (1987) ‘Atomic-scale surface modifications using a tunnelling microscope’, Nature 325, 419–421.

    Article  CAS  Google Scholar 

  25. Taylor, G. I. (1964) ‘Disintegration of water drops in an electric field’, Proceedings Royal Society London A280, 383–397.

    Article  Google Scholar 

  26. Bell, A. E. and Swanson, L. W. (1986) ‘The influence of substrate geometry on the emission properties of a liquid metal ion source’, Applied Physics A 41, 335–346.

    Article  Google Scholar 

  27. Assayag, G. Ben, Sudraud, P., and Swanson, L. W. (1987) ‘Close-spaced ion emission from gold and gallium liquid metal ion source’, Surface Science 181, 362–369.

    Article  Google Scholar 

  28. Jipson, V. B. and Jones, C. R. (1981) ‘Infrared dyes for optical storage’, J. Vacuum Science & Technology 18, 105–109.

    Article  CAS  Google Scholar 

  29. Lou, D. Y., Blom, G. M., and Kenney, G. C. (1981) ‘Bit oriented optical storage with thin tellurium films’, J. Vacuum Science & Technology 18, 78–86.

    Article  CAS  Google Scholar 

  30. Connell, G. A. N. (1986) ‘Problems and opportunities in erasable optical recording’, in L. J. Brillson (ed.), Frontiers in Electronic Materials & Processing, American Institute of Physics Conference Proceedings No. 138, New York, pp. 29–39.

    Google Scholar 

  31. Bloomberg, D. S. and Connell, G. A. N. (1985) ‘Prospects for magneto-optic recording’, IEEE Computer Society Press, pp. 32–38.

    Google Scholar 

  32. Martin, Y., Williams C. C, and Wickramasinghe, H. K. (1988) ‘Tip-techniques for microcharacterization of materials’, Scanning Microscopy 2, 3–8;

    Google Scholar 

  33. Martin, Y., Williams, C. C, and Wickramasinghe, H. K. (1986) ‘Atomic force microscope — force mapping and profiling on a sub 100-Å scale’, J. Applied Physics 61, 4723–4729.

    Article  Google Scholar 

  34. Abraham, D. W., Williams, C. C, and Wickramasinghe, H. K. (1988) Measurement of in-plane magnetization by force microscopy’, Applied Physics Letters 53, 1446–1448.

    Article  CAS  Google Scholar 

  35. Grütter, P., Meyer, E., Heinzelmann, H., Rosenthaler, L., Hidber, H.-R., and Güntherodt, H.-J. (1988) ‘Applications of atomic force microscopy to magnetic materials’, J. Vacuum Science & Technology A 6, 279–282; Grütter, P., Wadas, A., Meyer, E., Heinzelmann, H., Hidber, H.-R., and Güntherodt, H.-J. (1989) ‘Magnetic force microscopy of a CoCr thin film’, submitted to J. Applied Physics.

    Article  Google Scholar 

  36. Mamin, H. J., Rugar, D., Stern, J. E., Terris, B. D., and Lambert, S. E. (1988) ‘Force microscopy of magnetization patterns in longitudinal recording media’, Applied Physics Letters 53, 1563–1565.

    Article  Google Scholar 

  37. Reimer, L. (1984) ‘Transmission electron microscopy’ in, Springer Series in Optical Science, vol. 36, Springer, New York;

    Google Scholar 

  38. Celotta, R. J. and Pierce, D. T. (1986) ‘Polarized electron probes of magnetic surfaces’, Science 234, 333–340.

    Article  CAS  Google Scholar 

  39. Mamin, H. J., Rugar, D., Stern, J. E., Fontana, R. E. Jr., and Kasiraj, P. (1989) ‘Magnetic force microscopy of thin permalloy films’, submitted to Applieid Physics Letters.

    Google Scholar 

  40. Rugar, D., Lin, C.-J., and Geiss, R. (1987) ‘Submicron domains for high density magneto-optic data storage’, IEEE Transactions on Magnetics MAG-23, 2263–2265.

    Article  Google Scholar 

  41. Araujo, C, Scott, J. F., Godfrey, R. B., and McMillan, L. (1986) ‘Analysis of switching transients in KNO3 ferroelectric memories’, Applied Physics Letters 48, 1439–1440;

    Article  CAS  Google Scholar 

  42. Dimmler, K., Parris, M., Butler, D., Eaton, S., Pouligny, B., Scott, J. F., and Ishibashi, Y. (1987) ‘Switching kinetics in KNO3 ferroelectric thin-film memories’, J. Applied Physics 61, 5467–5470;

    Article  CAS  Google Scholar 

  43. and Bondurant, D. and Gnadinger, F. (1989) ‘Ferroelectrics for nonvolatile RAMs’, IEEE Spectrum 26, 30–33.

    Article  Google Scholar 

  44. J. R. Matey and J. Blanc, (1985) ‘Scanning capacitance microscopy’, J. Applied Physics, vol. 57, p. 1437–1444.

    Article  Google Scholar 

  45. Erlandsson, R., McClelland, G. M., Mate, C. M., and Chiang, S. (1988) ‘Atomic force microscopy using optical interferometry’, J. Vacuum Science & Technology A 6, 266–270.

    Article  CAS  Google Scholar 

  46. Siegenthaler, H. This volume.

    Google Scholar 

  47. Sonnenfeld, R. and Hansma, P. K. (1986) ‘Atomic resolution microscopy in water’, Science 232, 211–213;

    Article  CAS  Google Scholar 

  48. Drake, B., Sonnenfeld, R., Schneir, J., and Hansma, P. K. (1987) ‘Scanning tunneling microscopy of processes at liquid-solid interfaces’, Surface Science 181, 92–97.

    Article  CAS  Google Scholar 

  49. Interestingly, the same group were the first to immerse the AFM in water — see Drake, B., Prater, C. B., Weisenhorn, A. L., Gould, S. A. C, Albrecht, T. R., Quate, C. F., Cannell, D. S., Hansma, H. G., and Hansma, P. K. (1989) ‘Imaging crystals, polymers, and processes in water with the atomic force microscope’, Science 243, 1586–1589.

    Article  CAS  Google Scholar 

  50. Bard, A. J., Fan, F.-R. F., Kwak, J., and Lev, O. (1989) ‘Scanning electrochemical microscopy. Introduction and principles’, Analytical Chemistry, 61, 132–138.

    Article  CAS  Google Scholar 

  51. Dovek, M. M., Heben, M. J., Lewis, N. S., Penner, R. M., and Quate, C. F. (1988) ‘Applications of scanning tunneling microscopy to electrochemistry’, in M. P. Soriaga (ed.), Electrochemical Surface Science, ACS Symposium Series 378, American Chemical Society, Washington, D.C. Chap 13, pp. 174–201.

    Chapter  Google Scholar 

  52. Lin, C. W., Fan, F-R. F., and Bard, A. J. (1987) ‘High resolution photoelectrochemistry etching of n-GaAs with the scanning electrochemistry and tunneling microscope’, J. Electrochemical Society 134, 1038–1039.

    Article  CAS  Google Scholar 

  53. Schneir, J. and Hansma, P. K. (1987) ‘Scanning tunneling microscopy and lithography of solid surfaces covered with nonpolar liquids’, Langmuir 3, 1025–1027.

    Article  CAS  Google Scholar 

  54. For a more complete description see, Sonnenfeld, R., Schneir, J., and Hansma, P. K. (1989) ‘Scanning tunneling microscopy: a natural for electrochemistry’, in J. O’M. Bockris, B. Conway and R. E. White (eds.), invited chapter, to appear in Modern Aspects of Electrochemistry, 21st volume, Plenum Press, New York.

    Google Scholar 

  55. Itaya, K. and Tomita, E. (1988) ‘Scanning tunneling microscope for electrochemistry — a new concept for the in situ scanning tunneling microscope in electrolyte solutions’, Surface Science 201, L507-L512.

    Article  CAS  Google Scholar 

  56. Sakai, K., Matsuda, H., Kawada, H., Eguchi, K., and Nakagiri, T. (1988) ‘Switching and memory phenomena in Langmuir-Blodgett films’, Applied Physics Letters 53, 1274–1276.

    Article  Google Scholar 

  57. Murray, R. W. (1984), in A. J. Bard (ed.), Electroanalytical Chemistry, vol. 13, Marcel Dekker, New York, pp. 191–368.

    Google Scholar 

  58. Kuhn, H. (1983) ‘Functionalized monolayer assembly manipulation’, Thin Solid Films 99, 1–16;

    Article  CAS  Google Scholar 

  59. Mann, B. and Kuhn, H. (1970) ‘Tunneling through fatty acid salt monolayers’, J. Applied Physics 42, 4398–4405.

    Article  Google Scholar 

  60. Sabatani, E., Rubinstein, I., Maoz, R., and Sagiv, J. (1987) ‘Organized self-assembling monolayers on electrodes’, J. Electroanalytical Chemistry 219, 365–371.

    Article  CAS  Google Scholar 

  61. Zingsheim, H. P. (1977) ‘STEM as a tool in the construction of two-dimensional molecular assemblies’, in O. Johari (ed.), Scanning Electron Microscopy, vol. 1, IIT Research Institute.

    Google Scholar 

  62. Albrecht, T. R., Dovek, M. M., Lang, C. A., Grütter, P., Quate, C. F., Kuan, S. W. J., Frank, C. W., and Pease, R. F. W. (1988) ‘Imaging and modification of polymers by scanning tunneling and atomic force microscopy’, J. Applied Physics 64, 1178–1184.

    Article  CAS  Google Scholar 

  63. Foster, J. S., Frommer, J. E., and Arnett, P. C. (1988) ‘Molecular manipulation using a tunnelling microscope’, Nature 331, 324–326.

    Article  CAS  Google Scholar 

  64. Spong, J. K., Mizes, H. A., La Comb, L. J. Jr., Dovek, M. M., Frommer, J. E., and Foster, J. S. (1989) ‘Contrast mechanism for resolving organic molecules with tunneling microscopy’, Nature 338, 137–139.

    Article  CAS  Google Scholar 

  65. Foster, J. S. and Frommer, J. E. (1988) ‘Imaging of liquid crystals using a tunnelling microscope’, Nature 333, 542–545.

    Article  Google Scholar 

  66. Staufer, U., Wiesendanger, R., Eng, L., Rosenthaler, L., Hidber, H.-R., Güntherodt, H.-J., and Garcia, N. (1988) ‘Surface modification in the nanometer range by the scanning tunneling microscope’, J. Vacuum Science & Technology A 6, 537–539.

    Article  CAS  Google Scholar 

  67. Stern, J. E., Terris, B. D., Mamin, H. J., and Rugar, D. (1988) ‘Deposition and imaging of localized charge on insulator surfaces using a force microscope’, Applied Physics Letters 53, 2717–2719.

    Article  Google Scholar 

  68. Jaklevic, R. C. and Elie, L. (1988) ‘Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111)’, Physical Review Letters 60, 120–123.

    Article  CAS  Google Scholar 

  69. Hsu, T. (1983) Ultramicroscopy 11, 167.

    Article  CAS  Google Scholar 

  70. Hallmark, V. M., Chiang, S., Rabolt, J. F., Swalen, J. D., and Wilson, R. J. (1987) ‘Observation of atomic corrugation on Au(111) by Scanning Tunneling Microscopy’, Physical Review Letters 59, 2879–2882.

    Article  CAS  Google Scholar 

  71. Emch, R., Nogami, J., Dovek, M. M., Lang, C. A., and Quate, C. F. (1989) ‘Characterization of gold surfaces for use as substrates in scanning tunneling microscopy studies’, J. Applied Physics 65, 79–84.

    Article  CAS  Google Scholar 

  72. Roberts, G. G., Vincett, P. S., and Barlow, W. A. (1981) ‘Technological applications of Langmuir-Blodgett films’, Physics Technology 12, 69–75.

    Article  CAS  Google Scholar 

  73. Dovek, M. M., Albrecht, T. R., Kuan, S. W. J., Lang, C. A., Emch, R., Grüner, P., Frank, C. W., Pease, R. F. W., and Quate, C. F. (1988) ‘Observation and manipulation of polymers by scanning tunneling and atomic force microscopy’, J. Microscopy 152, Pt. 1, 229–236.

    Article  Google Scholar 

  74. Albrecht, T. R. (1989) ‘Advances in atomic force microscopy and scanning tunneling microscopy’, Chap 6, Thesis, Stanford University.

    Google Scholar 

  75. Weizmann Institute of Science, Rehovot, Israel.

    Google Scholar 

  76. Smith, D. P. E. IBM Physikgruppe, Munich, private communication.

    Google Scholar 

  77. Albrecht, T. R., Dovek, M. M., Kirk, M. D., Lang, C. A., Quate, C. F., and Smith, D. P. E. (1989) ‘Nanometer-scale hole formation on graphite using a scanning tunneling microscope’, submitted to Applied Physics Letters.

    Google Scholar 

  78. Pohl, D. W. (1987) Proceedings of the Adriatico Research Conference on Scanning Tunneling Microscopy — Fundamentals and Theoretical Progress, Trieste, Italy, July 28–31, 1987.

    Google Scholar 

  79. Penner, R. California Institute of Technology, private communication.

    Google Scholar 

  80. Siekhaus, W. J. Lawrence Livermore Research Laboratory, private communication.

    Google Scholar 

  81. Olander, D. R., Acharya, T. R., and Ullman, A. Z. (1977) ‘Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor’, J. Chemical Physics 67, 3549–3562.

    Article  CAS  Google Scholar 

  82. Ashby, C. I. H. (1982) Temperature dependence of electron bombardment enhanced reactivity of different types of graphite’, J. Nuclear Materials 111 & 112, 750–756;

    Article  Google Scholar 

  83. Balooch, M. and Olander, D. R. (1975) ‘Reactions of modulated molecular beams with pyrolytic graphite III. Hydrogen’, J. Chemical Physics 63, 4772–4786.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quate, C.F. (1990). Surface Modification with the STM and the AFM. In: Behm, R.J., Garcia, N., Rohrer, H. (eds) Scanning Tunneling Microscopy and Related Methods. NATO ASI Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7871-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7871-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4075-6

  • Online ISBN: 978-94-015-7871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics