Skip to main content

Nonsteady aerodynamics of lifting and non-lifting surfaces

  • Chapter
A modern course in aeroelasticity

Part of the book series: Mechanics: Dynamical Systems ((MDYS,volume 11))

  • 278 Accesses

Abstract

Nonsteady aerodynamics is concerned with the time dependent fluid motion generated by (solid) bodies moving in a fluid. Normally (and as distinct from classical acoustics) the body motion is composed of a (large) steady motion plus a (small) time dependent motion. In classical acoustics no (large) steady motions are examined. On the other hand, it should be said, in most of classical aerodynamic theory small time dependent motions are ignored, i.e., only small steady perturbations from the original steady motion are usually examined. However, in a number of problems arising in aeroelasticity, such as flutter and gust analysis, and also in fluid generated noise, such as turbulent boundary layers and jet wakes, the more general problem must be attacked. It shall be our concern here.* The basic assumptions concerning the nature of fluid are that it be inviscid and its thermodynamic processes be isentropic. We shall first direct our attention to a derivation of the equations of motion, using the apparatus of vector calculus and, of course, allowing for a large mean flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  1. Liepmann, H. W. and Roshko, A., Elements of Gasdynamics, John Wiley, 1957.

    MATH  Google Scholar 

  2. Hildebrand, F. B., Advanced Calculus for Engineers, Prentice-Hall, Inc., 1961.

    Google Scholar 

  3. van der Vooren, A. I., Two Dimensional Linearized Theory, Vol. II, Chapter 2, AGARD Manual on Aeroelasticity.

    Google Scholar 

  4. Lomax, H., Heaslet, M. A., Fuller, F. B. and Sluder, L., ‘Two- and Three-dimensional Unsteady Lift Problems in High Speed Flight’, NACA Report 1077, 1952.

    Google Scholar 

  5. Landahl, M. T. and Stark, V. J. E., ‘Numerical Lifting Surface Theory—Problems and Progress’, AIAA Journal (November 1968) pp. 2049–2060.

    Google Scholar 

  6. Watkins, C. E., Three Dimensional Supersonic Theory, Vol. II, Chapter 5, AGARD Manual on Aeroelasticity.

    Google Scholar 

  7. Bateman, H., Table of Integral Transforms, McGraw-Hill, 1954.

    Google Scholar 

  8. Many Authors, Oslo AGARD Symposium Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, T0nsberg, Oslofjorden, Norway (Nov. 1970).

    Google Scholar 

  9. Landahl, M. T. and Ashley, H., Thickness and Boundary Layer Effects, Vol. II, Chapter 9, AGARD Manual on Aeroelasticity.

    Google Scholar 

  10. Williams, D. E., Three-Dimensional Subsonic Theory, Vol. II, Chapter 3, AGARD Manual on Aeroelasticity.

    Google Scholar 

  11. Albano, E. and Rodden, W. P., ‘A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows’, AIAA J. (February 1969) pp. 279–285.

    Google Scholar 

  12. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

    MATH  Google Scholar 

  13. Watkins, C. E., Woolston, D. S. and Cunningham, J. J., ‘A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds’, NASA Technical Report TR-4S, 1959.

    Google Scholar 

  14. Williams, D. E., Some Mathematical Methods in Three-Dimensional Subsonic FlutterDerivative Theory, Great Britain Aeronautical Research Council, R&M 3302, 1961.

    Google Scholar 

  15. Cunningham, A. M., Jr., ‘Further Developments in the Prediction of Oscillatory Aerodynamics in Mixed Transonic Flow’, AIAA Paper 75–99 (January 1975).

    Google Scholar 

  16. Morino, L., Chen, L. T. and Suciu, E. O., ‘Steady and Oscillatory Subsonic and Supersonic Aerodynamics Around Complex Configurations’, AIAA Journal (March 1975), pp. 368–374.

    Google Scholar 

  17. Rodden, W. P., ‘State-of-the-Art in Unsteady Aerodynamics’, AGARD Report No. 650, 1976.

    Google Scholar 

  18. Ashley, H. and Rodden, W. P., ‘Wing-Body Aerodynamic Interaction’, Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 431–472.

    Article  Google Scholar 

  19. Theodorsen, T., ‘General Theory of Aerodynamic Instability and the Mechanism of Flutter’, NACA Report 496, 1935.

    Google Scholar 

  20. Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, National Bureau of Standards, U.S. Printing Office, 1965.

    Google Scholar 

  21. Edwards, J. V., Ashley, H. and Breakwell, J. B., ‘Unsteady Aerodynamics Modeling for Arbitrary Motions’, AIAA Paper 77–451, AIAA Dynamics Specialist Conference, San Diego, March 1977.

    Google Scholar 

  22. H. Lomax, Indicial Aerodynamics, Vol. II, Chapter 6, AGARD Manual on Aeroelasticity, 1960.

    Google Scholar 

  23. Rodden, W. P., Giesing, J. P. and Kâlmân, T. P., ‘New Developments and Applications of the Subsonic Doublet-Lattice Method for Non-Planar Configurations’, AGARD Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, Tonsberg, Oslofjorden, Norway (November 3–4) 1970.

    Google Scholar 

  24. Stahara, S. S. and Spreiter, J. R., ‘Development of a Nonlinear Unsteady Transonic Flow Theory’, NASA CR-2258 (June 1973).

    Google Scholar 

  25. Rubbert, P. and Landahl, M, ‘Solution of the Transonic Airfoil Problem through Parametric Differentiation’, AIAA Journal (March 1967), pp. 470–479.

    Google Scholar 

  26. Beam, R. M. and Warming, R. F., ‘Numerical Calculations of Two-Dimensional, Unsteady Transonic Flows with Circulation’, NASA TN D-7605, (February 1974).

    Google Scholar 

  27. Ehlers, F. E., ‘A Finite Difference Method for the Solution of the Transonic Flow Around Harmonically Oscillating Wings’, NASA CR-2257 (July 1974).

    Google Scholar 

  28. Traci, R. M., Albano, E. D., Farr, J. L., Jr. and Cheng, H. K., ‘Small Disturbance Transonic Flow About Oscillating Airfoils’, AFFDL-TR-74–37 (June 1974).

    Google Scholar 

  29. Magnus, R. J. and Yoshihara, H., ‘Calculations of Transonic Flow Over an Oscillating Airfoil’, AIAA Paper 75–98 (January 1975).

    Google Scholar 

  30. Cunningham, A. M., Jr., ‘Further Developments in the Prediction of Oscillatory Aerodynamics in Mixed Transonic Flow’, AIAA Paper 75–99 (January 1975).

    Google Scholar 

  31. Dowell, E. H. A Simplified Theory of Oscillating Airfoils in Transonic Flow’, Proceedings of Symposium on Unsteady Aerodynamics, pp. 655–679, University of Arizona (July 1975).

    Google Scholar 

  32. Bisplinghoff, R. L. and Ashley, H.,Principles of Aeroelasticity, John Wiley and Sons, Inc., New York, 1962.

    MATH  Google Scholar 

  33. Landahl, M., Unsteady Transonic Flow, Pergamon Press, London, 1961.

    Google Scholar 

  34. Spreiter, J. R., ‘Unsteady Transonic Aerodynamics—An Aeronautics Challenge’, Proceedings of Symposium on Unsteady Aerodynamics, pp. 583–608, University of Arizona (July 1975).

    Google Scholar 

  35. Ballhaus, W. F., Magnus, R. and Yoshihara, H., ‘Some Examples of Unsteady Transonic Flows Over Airfoils’, Proceedings of a Symposium on Unsteady Aerodynamics, pp. 769–792, University of Arizona (July 1975).

    Google Scholar 

  36. Knechtel, E. D., ‘Experimental Investigation at Transonic Speeds of Pressure Distributions Over Wedge and Circular-Arc Airfoil Sections and Evaluation of Perforated-Wall Interference’, NASA TN D-15 (August 1959f).

    Google Scholar 

  37. Spreiter, J. R. and Alksne, A. Y., ‘Thin Airfoil Theory Based on Approximate Solution of the Transonic Flow Equation’, NACA TN 3970, 1957.

    Google Scholar 

  38. Park, P. H., ‘Unsteady Two-Dimensional Flow Using Dowell’s Method’, AIAA Journal (October 1976) pp. 1345–1346. Also see Isogai, K., ‘A Method for Predicting Unsteady Aerodynamic Forces on Oscillating Wings with Thickness in Transonic Row Near Mach Number 1’, National Aerospace Laboratory Technical Report NAL-TR-368T, Tokyo, Japan, June 1974. Isogai, using a modified local linearization procedure, obtains aerodynamic forces comparable to Park’s and these provide significantly better agreement with transonic flutter experiments on parabolic arc airfoils.

    Google Scholar 

  39. Dowell, E. H., ‘A Simplified Theory of Oscillating Airfoils in Transonic Flow: Review and Extension’, AIAA Paper 77–445, presented at AIAA Dynamic Specialists Conference, San Diego (March 1977).

    Google Scholar 

  40. Spreiter, J. R. and Stahara, S. S.,‘Developments in Transonic Steady and Unsteady Flow Theory’, Tenth Congress of the International Council of the Aeronautical Sciences, Paper No. 76–06 (October 1976).

    Google Scholar 

  41. Chan, S. T. K. and Chen, H. C., ‘Finite Element Applications to Unsteady Transonic Flow’, AIAA Paper 77–446.

    Google Scholar 

  42. Ballhaus, W. F. and Goorjian, P. M„ ‘Computation of Unsteady Transonic Flows by the Indicial Method’, AIAA Paper 77–447.

    Google Scholar 

  43. Isogai, K., ‘Oscillating Airfoils Using the Full Potential Equation’, AIAA Paper 77–448. Also see NASA TP1120, April 1978.

    Google Scholar 

  44. Eckhaus, W., ‘A Theory of Transonic Aileron Buzz, Neglecting Viscous Effects’, Journal of the Aerospace Sciences (June 1962) pp. 712–718.

    Google Scholar 

  45. Williams, M. H. ‘Unsteady Thin Airfoil Theory for Transonic Flow with Embedded Shocks’, Princeton University MAE Report No. 1376, May 1978.

    Google Scholar 

  46. Tijdeman, H. and Schippers, P., Results of Pressure Measurements on an Airfoil with Oscillating Flap in Two-Dimensional High Subsonic and Transonic Flow, National Aerospace Lab. Report TR 730780, The Netherlands (July 1973).

    Google Scholar 

  47. Goldstein, M. E., Braun, W., and Adamczyk, J. J., ‘Unsteady Flow in a Supersonic Cascade with Strong In-Passage Shocks’, J. Fluid Mechanics, Vol. 83, 3 (1977) pp. 569–604.

    Article  MATH  Google Scholar 

  48. Rowe, W. S., Sebastian, J. D., and Redman, M. C., ‘Recent Developments in Predicting Unsteady Airloads Caused by Control Surfaces’, J. Aircraft (December 1976) pp. 955–963.

    Google Scholar 

  49. McCroskey, W. J., ‘Some Current Research in Unsteady Fluid Dynamics—The 1976 Freeman Scholar Lecture’, Journal of Fluids Engineering (March 1977) pp. 8–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dowell, E.H., Curtiss, H.C., Scanlan, R.H., Sisto, F. (1989). Nonsteady aerodynamics of lifting and non-lifting surfaces. In: Dowell, E.H., Curtiss, H.C., Scanlan, R.H., Sisto, F. (eds) A modern course in aeroelasticity. Mechanics: Dynamical Systems, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7858-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7858-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0185-1

  • Online ISBN: 978-94-015-7858-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics