Skip to main content

Part of the book series: Mathematics and Its Applications ((MAEE,volume 28))

  • 399 Accesses

Abstract

This Chapter is concerned with existence of a triangle satisfying prescribed conditions. Of course, it is well-known that a, b, c are sides of a triangle if and only if a, b, c ≥ 0, b+c ≥ a, c+a ≥ b, a+b ≥ c. If we wanted to rule out degenerate triangles, we would have to omit the equality signs.

Chapter XIII also contains many criteria for the existence of a triangle and of some other figures in E2 and E3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramus and É. Rouché, ‘Question 233’, Nouv. Ann. Math. 10 (1851), 353–355.

    Google Scholar 

  2. R. Sondat and E. Lemoine, ‘Question 1593’, Ibid. 9 (1890), 49.

    Google Scholar 

  3. R. Sondat and E. Lemoine, ‘Question 1593’, Ibid. 10 (1891), 43–47.

    Google Scholar 

  4. Â. Laisant, Géométrie du Triangle Paris 1896, p. 112.

    Google Scholar 

  5. S. Nakajima, ‘Some Inequalities between the Fundamental Quantities of the Triangle’, Tóhoku Math. J. 25 (1925), 115–121.

    MATH  Google Scholar 

  6. S. Nakajima, ‘Some Relations among`undamental Quantities of a Triangle Inscribed in a Circle’, Tokyo But. Zassi 35 (1926), 75–86. (Japanese).

    Google Scholar 

  7. R. Frucht, ‘Upper and Lower Bounds for the Area of a Triangle for whose Sides Two Symmetric Functions are Known’, Can. J. Math. 9 (1957), 227–231.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. J. Blundon, ‘On Certain Polynomials Associated with the Triangle’, Math. Mag. 36 (1963), 247–248.

    Google Scholar 

  9. W. J. Blundon, ‘Inequalities Associated with the Triangle’, Can. Math. Bull. 8 (1965), 615–626.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Bottema, Nieuw Ârch. Wisk. 13 (1965), 246.

    Google Scholar 

  11. Bottema, ‘Inequalities for R, r, and s’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 338–352 (1971), 27–36.

    Google Scholar 

  12. R. Frucht and M. S. Klamkin, ‘On Best Quadratic Triangle Inequalities’. Geometriae Dedicata 2 (1973), 341–348.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Paasche, ‘Das Bottema-Deltoid als Enveloppe’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461–497 (1974), 121–125.

    Google Scholar 

  14. M. Margev, ‘Neravenstva megdu perimet’ra i radiusite na vpisanata i opisanata okr’gnost na tri’g’lnika i njakoi sledstvija of tjah’, Obugenieto po Mat. 6 (1976), 3–7.

    Google Scholar 

  15. J. F. Rigby, ‘Quartic and Sextic Inequalities for the Sides of Triangles, and Best Possible Inequalities’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602–633 (1978), 195–202.

    Google Scholar 

  16. A. Lupas, ‘Problem 441’, Mat. Vesnik T(15) (30) (1978), 293.

    Google Scholar 

  17. V. N. Murty, ‘A New Inequality for R, r and s’, Crux Math. 8 (1982), 62–68.

    Google Scholar 

  18. V. P. Soltan and S. I. Mejdman, Togdestva i neravenstva v treugol’nike Kisinev, 1982.

    Google Scholar 

  19. G. Petrov, ‘Opodmínkäch konstrukce trojúhelníku’, Gasopis pro péstovani matematiky 77 (1952), 77–92.

    MATH  Google Scholar 

  20. M. Berman and F. G. B. Maskell, ‘Problem 94. The Two-Year Coll.’, Math. J. 9 (1978), 300–301.

    Google Scholar 

  21. V. T. Janekoski, ‘Neravenstvo na Bohr kako potreben i dovolen uslov za egzistencija na triagolnik’, Ann. Fac. d’Électrotech. Méc. l’Univ. Skopje 4 (1970), 15–18.

    Google Scholar 

  22. V. T. Janekoski, ‘Za eden potreben i dovolen uslov za egzistencija na triagolnik’, Bull. Soc. Math. Phys. Macédoine 21 (1970), 85–87.

    MathSciNet  Google Scholar 

  23. H. Carus and O. P. Lossers, ‘Problem E 2823’, Amer. Math. Monthly 87 (1980), 220.

    Google Scholar 

  24. H. Carus and O. P. Lossers, ‘Problem E 2823’, Amer. Math. Monthly 88 (1981), 540.

    Article  MathSciNet  Google Scholar 

  25. Ngo Tan and M. S. Klamkin, ‘Problem 589’, Crux Math. 7 (1981), 307.

    Google Scholar 

  26. Problem Gy 1489. Köz. Mat. Lap. 47 (1973), 77.

    Google Scholar 

  27. V. T. Janekoski, ‘Egzistencija i nekoi osobini na triagolnici öiiéto strani se trigonometriski funkcii na aglite od dadan triagolnik’, Bull. Soc. Mat. Phys. Macédoine 21 (1970), 89–95.

    MathSciNet  Google Scholar 

  28. V. T. Janekoski, ‘Za nekoi neravenstva inducirani od dadeni triagolnici’, Ibid. 23 (1972), 79–87.

    MathSciNet  Google Scholar 

  29. Z. Madevski, ‘Ietirite znacöajni toöki vo triagolnikot kako teäiéta na pogodni izbrani masi’, Ibid. 20 (1969), 31–46.

    Google Scholar 

  30. Z. Madevski, ‘A Procedure for Obtaining Relations between the Angles of a Triangle’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 338–352 (1971), 87–88.

    Google Scholar 

  31. C. Pabst, ‘Einige Beziehungen zwischen den drei Höhen und zwischen den drei seitenhalbirenden Ecktransversalen eines Dreiecks’, Arch. Math. Phys. (2) 7 (1889), 10–26.

    Google Scholar 

  32. Z. Madevski, ‘Nexoi metodi za dobivanje relacii megu elementite od oden triagolnik’, Dissertation, Skopje, 1973.

    Google Scholar 

  33. O. Bottema and K. Inkeri, ‘Problem 353’, Nieuw Arch. Wisk. 3 (21) (1973), 282.

    Google Scholar 

  34. O. Bottema and K. Inkeri, ‘Problem 353’, Nieuw Arch. Wisk. 2 (22) (1974), 183–184.

    Google Scholar 

  35. M. S. Klamkin, Private communication.

    Google Scholar 

  36. M. S. Klamkin and Hj. Stocker, and G. Bercea, ‘Aufgabe 729’, Elem. Math. 29 (1974), 155.

    Google Scholar 

  37. M. S. Klamkin and Hj. Stocker, and G. Bercea, ‘Aufgabe 729’, Elem. Math. 30 (1975), 134–135.

    Google Scholar 

  38. P. Erdös and M. S. Klamkin, ‘A Triangle Inequality’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 412–460 (1973), 117–118.

    Google Scholar 

  39. L. Toscano, ‘Confronto degli Angoli di un Triangolo con quelli del Triangolo delle sue Mediane’, Archimede 8 (1956), 278–279.

    MathSciNet  MATH  Google Scholar 

  40. A. Bager, ‘Some Inequalities for the Mediane of a Triangle’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 338–352 (1971), 37–40.

    Google Scholar 

  41. A. Bager and M. S. Klamkin, ‘Aufgabe 677’, Elem. Math. 28 (1973), 129–130.

    Google Scholar 

  42. A. F. Möbius, ‘Uber eine Methode, um von Relationen, welche der Longimetrie angehören, zu entsprechenden Sätzen der Planimetrie zu gelangen’, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Math. Phys. Classe, Leipzig (1852), 41–54.

    Google Scholar 

  43. V. Linis and F. G. B. Maskell, ‘Problem 14’, Crux Math. 1/2 (1975/ 76), 7 and 28.

    Google Scholar 

  44. D. D Adamovid, ‘Problem 151’, Mat. Vesnik 6 (21) (1969), 470–471.

    Google Scholar 

  45. O. Bottema and H. Eves, ‘Problem 786’, Crux Math. 8 (1982), 277.

    Google Scholar 

  46. O. Bottema and H. Eves, ‘Problem 786’, Crux Math. 8 (1982), 277 and 10 (1984), 55–56.

    Google Scholar 

  47. Ó. Bottema and L. Somer, M. Kantrowitz, and H. Ahlburg, ‘Problem 1004’, Crux Math. 11 (1985), 15

    Google Scholar 

  48. Ó. Bottema and L. Somer, M. Kantrowitz, and H. Ahlburg, ‘Problem 1004’, Crux Math. 22 (1986), 86–89.

    Google Scholar 

  49. A. Vrba and A. Toutâra, ‘Problem 11’, Rozhledy Mat. Fyz. Praha 58 (1979/80), 84–86.

    Google Scholar 

  50. Problem 2795’, Mat. v âkole 1985, No. 5, 60.

    Google Scholar 

  51. S. J. Bildev and E. A. Velikova, ‘GTe(k) - transformation for a triangle and some applications’.

    Google Scholar 

  52. D. S. Mitrinovid and J. E. Pedarid, ‘Problem 1171*’, Crux Math. 12 (1986), 204.

    Google Scholar 

  53. V. Vâjâitu, Private communication.

    Google Scholar 

  54. K. Herterich, Die Konstruktion von Dreiecken Stuttgart 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Volenec, V. (1989). The Existence of a Triangle. In: Recent Advances in Geometric Inequalities. Mathematics and Its Applications, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7842-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7842-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8442-2

  • Online ISBN: 978-94-015-7842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics