Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 250))

  • 691 Accesses

Abstract

The difficulties in quantizing gravity are due to the non-Lie-algebra nature of the gauged translation operators and to the dimensional nature of the Newton constant. The first issue may be dealt with by gauging the infinite Lie algebra of the diffeomorphisms. The second is solved if gravity is represented by a gl (4,R) gauge with dimensionless coupling, with Einstein’s theory and Newton’s coupling resulting from spontaneous symmetry breakdown (i.e. a low energy effective theory).

Supported in part by the US DOE Grant DE-FG05-85ER40200 and by RZNS (Belgrade)

Wolfson Chair Extraordinary in Theoretical Physics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goroff and Sagnotti, Phys. Lett. B160 (1985) 81.

    Google Scholar 

  2. Y. Ne’eman and T. Regge, Phys. Lett. B74 (1978) 54;

    Google Scholar 

  3. Y. Ne’eman and T. Regge, Rivista d. Nuovo Cim. 1, N5 (ser. 3, 1978).

    MathSciNet  Google Scholar 

  4. J. Thierry-Mieg and Y. Ne’eman, Ann. Phys. (NY) 123 (1979) 247.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Ne’eman, E. Takasugi and J. Thierry-Mieg, Phys. Rev. D22 (1980) 2371.

    Google Scholar 

  6. F. W. Hehl, P. v.d. Heyde, G. D. Kerlick and J. M. Nester, Rev. Mod. Phys. 48 (1976) 393.

    Article  Google Scholar 

  7. P. A. M. Dirac, Phys. Rev. 114 (1959) 924.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Stelleand and P. C. West, Nucl. Phys. B145 (1978) 175.

    Article  Google Scholar 

  9. P. K. Townsend and P. v. Nieuwenhiuzen, Phys. Rev. D19 (1979) 3592.

    Google Scholar 

  10. M. J. Bowick and S. G. Rajeev, Phys. Rev. Lett. 58 (1987) 535;

    Article  MathSciNet  Google Scholar 

  11. J. Mickelsson, MIT preprint CTP 1448 (1987).

    Google Scholar 

  12. V. O. Ogievetsky, Lett. Nuovo Cim. 8 (1973) 988.

    Article  MathSciNet  Google Scholar 

  13. L. Smolin, Nucl. Phys. B247 (1984) 511.

    Article  MathSciNet  Google Scholar 

  14. R. Kuhfuss and J. Nitsch, Gen. Rel. and Grav. 18 (1986) 1207.

    Article  MathSciNet  Google Scholar 

  15. A. Komar, Phys. rev. D30 (1984) 305;

    MathSciNet  Google Scholar 

  16. P. G. Bergmann and A. Komar, J. Math. Phys. 26 (1985) 2030.

    Article  MathSciNet  Google Scholar 

  17. J. W. Moffat, J. Math. Phys. 25 (1984) 347.

    Article  MathSciNet  Google Scholar 

  18. F. W. Hehl, G. D. Kerlick and P. v.d. Heyde, Phys. Lett. 63B (1976) 446.

    Google Scholar 

  19. F. W. Hehl, E. A. Lord and Y. Ne’eman, Phys. Lett. 71B (1977) 432;

    Google Scholar 

  20. F. W. Hehl, E. A. Lord and Y. Ne’eman, Phys. Rev. D17 (1978) 428.

    MathSciNet  Google Scholar 

  21. Y. Ne’eman and Dj. Šijački, Ann. Phys. (N.Y.) 120 (1979) 292;

    Article  Google Scholar 

  22. Y. Ne’eman and Dj. Šijački, Proc. Nat. Acad. Sci. (USA) 76 (1979) 561;

    Article  Google Scholar 

  23. Y. Ne’eman and Dj. Šijački, Phy. Lett. 109B (1982) 435.

    Google Scholar 

  24. Dj. Šijački in “Frontiers in Particle Physics ’83”, eds. Dj. Šijačkí et al (World Scientific, Singapore 1984), p. 382.

    Google Scholar 

  25. Dj. Šijački and Y. Ne’eman, J. Math. Phys. 26 (1985) 2457.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dj. Síjački, “SL(n,R) Spinors for Particles, Gravity and Superstrings”, Conference on Spinors in Physics.and Geometry, Trieste 1986;

    Google Scholar 

  27. Dj. Síjački, Ann. Isr. Phys. Sc. 3 (1980) 35.

    Google Scholar 

  28. V. O. Ogievetsky and I. V. Polubarinov, JETP 48 (1965) 1625.

    Google Scholar 

  29. C. J. Isham, A. Salam and J. Strathdee, Ann. Phys. (N.Y.) 62 (1971) 98.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Ne’eman and Dj. Sijacki, Int. J. Mod. Phys. A2 (1987), 1655.

    MathSciNet  Google Scholar 

  31. Y. Ne’eman and Dj. Šijački, Phys. Lett. 157B (1985) 267 and 275.

    Google Scholar 

  32. A. Cant and Y. Ne’eman, J. Math. Phys. 26 (1985) 3100.

    Article  MathSciNet  Google Scholar 

  33. J. Mickelsson, Comm. Mat. Phys. 88 (1983) 551.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ne’eman, Y., Šijački, D. (1988). Towards a Renormalizable Theory of Quantum Gravity. In: Bleuler, K., Werner, M. (eds) Differential Geometrical Methods in Theoretical Physics. NATO ASI Series, vol 250. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7809-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7809-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8459-0

  • Online ISBN: 978-94-015-7809-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics