Skip to main content

Part of the book series: Developments in Electromagnetic Theory and Applications ((DETA,volume 3))

  • 298 Accesses

Abstract

The idea of representing an arbitrary stratification by a series of uniform layers goes back at least to Rayleigh (1912). The problem of wave propagation through the transition is solved by matching the wave amplitude and derivative at the boundaries of the uniform layers, and letting the number of layers increase and their thickness decrease. (In the case of finite number of uniform layers, such as optical coatings, this limiting process is not required.) Rayleigh carried through the necessary algebra without reference to matrices; Weinstein (1947), Herpin (1947) and Abelès (1950, 1967) have shown how matrix algebra simplifies and systematizes this approach. We will give three versions of the matrix method, of which the last (given in Section 12–2) is the closest to that currently in use, but differs from it in having all matrix elements real in the absence of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References quoted in text

  • J. W. S. Rayleigh (1912) “On the propagation of waves through a stratified medium, with special reference to the question of reflection”, Proc. Roy. Soc. A86, 207–266.

    Article  ADS  MATH  Google Scholar 

  • W. Weinstein (1947) “The reflectivity and transmissivity of multiple thin coatings”, J. Opt. Soc. Amer. 37, 576–581.

    Article  MathSciNet  ADS  Google Scholar 

  • A. Herpin (1947) “Calcul du pouvoir réflecteur d’un système stratifié quelconque”, Comptes Rendus 225, 182–183.

    MathSciNet  MATH  Google Scholar 

  • F. Abelès (1950) “Recherches sur la propagation des ondes électromagnétiques sinusoidales dans les milieux stratifiés. Application aux couches minces”, Annales de Physique 5, 596–640, 706–782.

    Google Scholar 

  • F. Abelès (1967) “Optics of thin films”, Chapter 5 of “Advanced Optical Techniques”, edited by A. C. S. van Heel, North-Holland.

    Google Scholar 

  • G. G. Stokes (1862/1904) “On the intensity of the light reflected from or transmitted through a pile of plates”, Mathematical and Physical Papers 4, 145–156.

    Google Scholar 

  • J. W. S. Rayleigh (1917) “On the reflection of light from a regularly stratified medium”, Proc. Roy. Soc. A93, 565–577.

    Article  ADS  Google Scholar 

  • E. A. Pshenichnov (1962) “The tunnel effect through a system of identical potential barriers”, Soy. Phys.–Solid State 4, 819–821.

    MathSciNet  Google Scholar 

  • J. Heading (1973) “Exact and approximate methods for the investigation of the propagation of waves through a system of barriers”, Proc. Camb. Phil. Soc. 74, 161–178.

    Article  ADS  Google Scholar 

  • J. Heading (1982) “Four-parameter formulae for wave propagation through a periodic system of inhomogeneous slabs”, Wave Motion 4, 127–139.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Born and E. Wolf (1970) “Principles of optics”, (4th ed.) Pergamon.

    Google Scholar 

  • B. W. Ninham and V. A. Parsegian (1970) “van der Waals interaction in multilayer systems”, J. Chem. Phys. 53, 3398–3402.

    Article  ADS  Google Scholar 

  • A. Yariv and P. Yeh (1984) “Optical waves in crystals”, Wiley.

    Google Scholar 

  • A. Otto (1976) “Spectroscopy of surface polaritons by attenuated total reflection”, Chapter 13 in “Optical properties of solids: new developments”, edited by B. O. Seraphin, North-Holland.

    Google Scholar 

  • R. Dragila, B. Luther-Davies and S. Vukovic (1985) “High transparency of classically opaque metallic films”, Phys. Rev. Lett. 55, 1117–1120.

    Article  ADS  Google Scholar 

Additional references on optical properties of multilayers and on dielectric mirrors

  • O. S. Heavens (1955) “Optical properties of thin solid films”, Butterworths.

    Google Scholar 

  • O. S. Heavens (1970) “Thin film physics”, Methuen.

    Google Scholar 

  • E. Ritter (1972) “Optical coatings and thin film techniques”, Section C9 of the “Laser Physics Handbook”, Vol. 1, edited by F. T. Arecchi and E. O. Schulz-Dubois, North-Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lekner, J. (1987). Matrix methods. In: Theory of Reflection of Electromagnetic and Particle Waves. Developments in Electromagnetic Theory and Applications, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7748-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7748-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8299-2

  • Online ISBN: 978-94-015-7748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics