Skip to main content

Limitations to the Use of Somaclonal Variation in Crop Improvement

  • Chapter
Book cover Somaclonal Variations and Crop Improvement

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 20))

Abstract

Somaclonal variation in the major crop plants, rice, wheat, maize, barley, triticale, sugarcane, potato and a few forage grasses is reviewed. Reported somaclonal variants include chlorophyll-deficient plants, and those with changed morphology, single-gene mutations, polyploidy, aneuploidy, chromosomal re-arrangements, modified yield, quality and disease resistance, and occasionally novel variants not present in the natural gene pools. Somaclonal variation results from both dominant and recessive mutations. The type and frequency of variants suggests that somaclonal variation is akin to non-directed, random mutagenesis which generates a large amount of unwanted variation. Consequently, most of somaclonal variation is either useless or of limited use in direct varietal upgrading. However, somaclonal variants are easier to detect than those in conventional mutagenesis. It is concluded that the development of in-vitro selection procedures is essential to sieve out useful from useless variation to overcome the constraints of somaclonal variation in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia, B.S. 1975. Regeneration of ryegrass plants in tissue culture. Crop Sci., 15, 449–452.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1976. Chromosomal changes in parasexually produced ryegrass. In “Current Chromosome Research” (Ed. K. Jones and P.E. Brandham). (Elsevier, Amsterdam), pp. 115–122.

    Google Scholar 

  • Ahloowalia, B.S. 1982a. Plant regeneration from callus culture in wheat. Crop Sci., 22, 405–410.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1982b. Plant regeneration from callus culture in potato. Euphytica, 31, 755–759.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1983. Spectrum of variation in somaclones of triploid ryegrass. Crop Sci., 23, 1141–1147.

    Article  Google Scholar 

  • Ahloowalia, B.S. and Sherington, J. 1985. Transmission of somaclonal variation in wheat. Euphytica, 34, (in press).

    Google Scholar 

  • Ahuja, P.S., Pental, D. and Cocking, E.C. 1587 I Plant regeneration from leaf base callus and cell suspensions of Triticum aestivum. Z. Pflanzenzüchtg., 89, 139–144.

    Google Scholar 

  • Alicchio, R., Antonioli, C. and Palenzona, D. 1984. Karyotypic variability in plants of Solanum melongena regenerated from callus grown in presence of culture of filtrate of Verticillium dahliae Theor. Appl. Genet., 67, 267–271.

    Article  Google Scholar 

  • Armstrong, K.C., Nakamura, C. and Keller, W.A. 1983. Karyotype instability in tissue culture régénérants of triticale (X Tritico-secale Wittmack) cv. ‘Welsh ’ from 6-month-old callus cultures. Z. Pflanzenzüchtg., 91, 233–245.

    Google Scholar 

  • Anonymous. 1983. Tissue culture for crops. Newsletter 2. pp. 5–6. Tissue culture for crops project, Colorado State Univ., Fort Collins, Colorado.

    Google Scholar 

  • Bajaj, Y.P.S., Sidhu, B.S. and Dubey, V.K. 1981. Regeneration of genetically diverse plants from tissue cultures of forage grass — Panicum sps. Euphytica, 30, 135–140.

    Article  Google Scholar 

  • Behnke, M. 1979. Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants. Theor. Appl. Genet., 55, 69–71.

    Article  Google Scholar 

  • Behnke, M. 1980a. General resistance to late blight of Solanum tuberosum plants regenerated from callus resistant to culture filtrates of Phytophthora infestans. Theor. Appl. Genet., 56, 151–152.

    Google Scholar 

  • Behnke, M. 1980b. Selection of dihaploid potato callus for resistance to the culture filtrate of Fusarium oxysporum. Z. Pflanzenzuchtg., 85, 254–258.

    Google Scholar 

  • Bennici, A. and D ’Amato, F. 1978. In vitro regeneration of durum wheat plants. 1. Chromosome numbers of regenerated plantlets. Z. Pflanzenzuchtg., 81, 305–311.

    Google Scholar 

  • Bingham, E.T. and Saunders, J.W. 1974. Chromosome manipulation in alfalfa: Scaling the cultivated tetraploid to seven ploidy levels. Crop Sci., 14, 474–477.

    Article  Google Scholar 

  • Chaleff, R.S. and Ray, T.B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science, 223, 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, C.R., Hubbard, E.T. and Brookhouzen, P.D. 1984. Analysis of variability in regenerated corn inbred lines. Agron. Abst., 29th Annual Meeting, Crop Sci. Soc. Amer., Amer. Soc. Agron., Madison, Wisconsin, p. 63.

    Google Scholar 

  • Cummings, D.P., Green, C.E. and Stuthman, D.D. 1976. Callus induction and plant regeneration in Oats. Crop Sci., 16, 465–470.

    Article  Google Scholar 

  • Dale, P.J. and Deambrogio, E. 1979. A comparison of callus induction and plant regeneration from different expiants of Hordeum vulgare. Z. Pflanzenphysiol., 94, 65–77.

    CAS  Google Scholar 

  • Dixon, L.K., Leaver, C.J. , Trettel, R.I.S. and Gengenbach, B.G. 1982. Mitochondrial sensitivity to Drechslera maydis T-toxin and the synthesis of a variant mitochondrial polypeptide in plants derived from maize tissue cultures with Texas male-sterile cytoplasm. Theor. Appl. Genet., 63, 75–80.

    Article  CAS  Google Scholar 

  • Edallo, S., Zucchinali, C., Perenzin, M. and Salamini, F. 1981. Chromosomal variation and frequency of spontaneous mutations associated with in vitro culture and plant regeneration in maize. Maydica, 26, 39–56.

    Google Scholar 

  • Evans, D.A. and Sharp, W.R. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science, 221, 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach, B.G., Green, C.E. and Donovan, C.M. 1977. Inheritance of selected pathotoxin resistance in maize plants regenerated from cell culture. Proc. Natl. Acad. Sci. (USA)., 74, 5113–5117.

    Article  CAS  Google Scholar 

  • Gengenbach, B.G., Connelly, J.A., Pring, D.R. and Conde, M.F. 1981. Mitochondrial DNA variation in maize plants regenerated during tissue culture selection. Theor. Appl. Genet., 59, 161–167.

    Article  CAS  Google Scholar 

  • Gengenbach, B.G. and Diedrick, T.J. 1984. Seed nutritional quality improvement by tissue culture and related approaches. Agron. Abst. 29th Annual Meeting, Crop Sci. Soc. Amer., Amer. Soc. Agron., Madison, Wisconsin, p. 67.

    Google Scholar 

  • Green, C.E. 1977. Prospects for crop improvement in the field of cell culture. HortSci., 12, 131–134.

    Google Scholar 

  • Green, C.E. and Phillips, RTL. 1974. Potential selection system formutants with increased lysine, threonine and methionine in cereal crops. Crop Sci., 14, 827–830.

    Article  CAS  Google Scholar 

  • Heinz, D.J. and Mee, G.W.P. 1969. Plant differentiation from callus tissue of Saccharum species. Crop Sci., 9, 346–348.

    Article  Google Scholar 

  • Heinz, D.J. and Mee, G.W.P. 1971. MorphologiC., cytogenetic and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Amer. J. Bot., 58, 257–262.

    Article  Google Scholar 

  • Heinz, D.J., Mee, G.W.P. and Nickell, L.G. 1969. Chromosome number ofv some Saccharum species hybrids and their cell suspension cultures. Amer. J. Bot., 56, 450–456.

    Article  Google Scholar 

  • Heinz, D.J., Krishnamurthi, M., Nickell, L.G. and Maretzki, A. 1977. Cell, tissue and organ culture in sugarcane improvement. In “Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture” (Ed. J. Reinert and Y.P.S. Bajaj). (Springer-Verlag, Berlin). pp. 1–17.

    Chapter  Google Scholar 

  • Henzel, J.J., Miller, J.P., Brinkman, M.A., and Fendos, E. 1985. Genotype and media effects on callus formation and regeneration in barley. Crop Sci., 25, 27–31.

    Article  Google Scholar 

  • Hubbard, E.T., Cook, J.P., Hollingsworth, M.D., and Cowley, C.R. 1984. In vitro culture, regeneration and analysis of seven inbred corn lines. Agron. Abst. 29th Annual Meeting, Crop Sci. Soc. Amer., Amer. Soc. Agron., Madison, Wisconsin, p. 72.

    Google Scholar 

  • Jordan, M.C. and Larter, E.N. 1985. Somaclonal variation in triticale (X Triticosecale Wittmack) cv. Carman. Can. J. Genet. Cytol., 27, 151–157.

    CAS  Google Scholar 

  • Karp, A. and Maddock, S.E. 1984. Chromosome variation in wheat plantsregenerated from cultured immature embryos. Theor. Appl. Genet., 67, 249–255.

    Article  Google Scholar 

  • Karp, A., Nelson, R.S., Thomas, E. and Bright, S.W.J. 1982. Chromosome variation in protoplast-derived potato plants. Theor. Appl. Genet., 63, 265–272.

    Article  Google Scholar 

  • Kasperbauer, M.J., Buckner, R.C. and Bush, L.P. 1979. Tissue culture of annual x tall fescue Fl hybrids: Callus establishment and plant regeneration. Crop Sci., 19, 457–460.

    Article  Google Scholar 

  • Larkin, P.J. and Scowcroft, W.R. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet., 60, 197–214.

    Article  Google Scholar 

  • Larkin, P.J., Ryan, S.A., Brettell, R. I.S. and Scowcroft, W.R. 1984. Heritable somaclonal variation in wheat. Theor. Appl. Genet., 67, 443–455.

    Article  CAS  Google Scholar 

  • Lat, J.B. and Lantin, M.M. 1976. Agronomic performance of sugarcane clones derived from callus tissue. Phillipine J. Crop Sci., 1, 117–123.

    Google Scholar 

  • Liu, M. and Chen, W. 1976. Tissue and cell culture as aids to sugar cane breeding. I. Creation of genetic variation through callus culture. Euphytica, 25, 393–403.

    Article  Google Scholar 

  • Liu, M.C. and Shih, S.C. 1983. Chromosomal variation in suspension cells of sugarcane. Rep. Taiwan Sugar Res. Inst., 99, 1–13.

    Google Scholar 

  • Lupi, M.C., Bennici, A., Baroncelli, S., Gennai, D. and D ’Amato, F. 1981. In vitro regeneration of durum wheat plants. II. Diplontic selection in aneusomatic plants. Z. Pflanzenzüchtg., 87, 167–171.

    Google Scholar 

  • Maddock, S.E., Lancaster, V.A., Risiott, R. and Franklin, J. 1983. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum). J. Expt. Bot., 34, 915–926.

    Article  Google Scholar 

  • McCoy, T.J., Phillips, R.L. and Rines, H.W. 1982. Cytogenetic analysis of plants regenerated from oat (Ayena sativa) tissue cultures; high frequency of partial chromosomal loss. Can J. Genet. Cytol., 24, 37–50.

    Google Scholar 

  • Nagai, C., Tew, T.L. and Ahloowalia, B.S. 1984. Somaclonal variation of an intergeneric hybrid: Saccharum x Ripidium. Agron. Abst., 29th Annual Meeting, Crop Sci. Soc. Amer., Amer. Soc. Agron., Madison, Wisconsin, p. 96.

    Google Scholar 

  • Niizeki, M. and Grant, W.F. 1971. Callus, plantlet formation, and polyploidy from cultured anthers of Lotus and Nicotiana. Can J. Bot., 49, 2041–2051.

    Article  Google Scholar 

  • Oono, K. 1978. Test tube breeding of rice by tissue culture. Trop. Agric. Res. Series, Ministry Agric. Forest. (Japan), 11, 109–124.

    Google Scholar 

  • Orton, T.J. 1980. Chromosomal variability in tissue cultures and regenerated plants of Hordeum. Theor. Appl. Genet., 56, 101–112.

    Article  CAS  Google Scholar 

  • Reish, B., Duke, S.H. and Bingham, E.T. 1981. Selection and characterization of ethionine-resistant alfalfa (Medicago sativa L.) cell lines. Theor. Appl. Genet., 59, 89–94.

    CAS  Google Scholar 

  • Sacristan, M.D. 1982. Resistance response to Phoma Ungarn of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus. Theor. Appl. Genet., 61, 193–200.

    Google Scholar 

  • Schaeffer, G.W. 1982. Recovery of heritable variability in anther derived doubled-haploid rice. Crop Sci., 22, 1160–1164.

    Article  Google Scholar 

  • Schaeffer, G.W., Sharpe, Jr., F.T. and Cregan, P.B. 1984. Variation for improved protein and yield from rice anther culture. Theor. Appl. Genet., 67, 383–389.

    Article  CAS  Google Scholar 

  • Scowcroft, W.R 1984. Genetic variability in tissue culture: Impact on germplasm conservation and utilization. Technical Report, IBPGR Secretariat, Rome, pp. 41.

    Google Scholar 

  • Sears, R.G., Guenzi, A.C. and Gill, B.S. 1984. Somaclonal variation in wheat. Agron. Abst., 29th Annual Meeting, Crop Sci. Soc. Amer., Amer. Soc. Agron., Madison, Wisconsin, p. 87.

    Google Scholar 

  • Secor, G.A. and Shepard, J.F. 1981. Variability of protoplast-derived potato clones. Crop Sci., 21, 102–105.

    Article  Google Scholar 

  • Shepard, J.F., Bidney, D. and Shahin, E. 1980. Potato protoplasts in crop improvement. Science, 208, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Skene, K.G.M. and Barlass, M. 1983. Regeneration of plants from callus culture of Lolium rigidum. Z. Pflanzenzuchtg., 90, 130–135.

    Google Scholar 

  • Sreenivasan, J. and Sreemvasan, T.V. 1984. In vitro propagation of a Saccharum officinarum (L.) and Sclerostachya fusca (Roxb.) A. Camus hybrid. Theor. Appl. Genet., 67, 171–174.

    Article  Google Scholar 

  • Thomas, B.R. and Pratt, D. 1982. Isolation of paraquat-tolerant mutants from tomato cell cultures. Theo. Appl. Genet., 63, 169–176.

    Article  Google Scholar 

  • Thomas, E., Bright, S.W.J., Franklin, J., Lancaster, V.A and Miflin, B.J. 1982. Variation amongst protoplast-derived potato plants (Solanum tuberosum cv. ‘Maris Bard ’). Theor. Appl. Genet., 62, 65–68

    Google Scholar 

  • Torello, W.A. and Symington, A.G. 1984. Regeneration from perennial ryegrass callus tissue. HortSci., 19, 56–57.

    CAS  Google Scholar 

  • Torello, W.A., Symington, A.G. and Rufner, R. 1984. Callus initiation, plant regeneration and evidence of somatic embryogenesis in red fescue. Crop Sci., 24, 1037–1040.

    Article  CAS  Google Scholar 

  • Wu, L. and Antonovics, J. 1578. Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture. Amer. J. Bot., 65, 268–271.

    Article  Google Scholar 

  • Zong-xiu, S., Cheng-zhang, Z., Kang-le, Z., Xiu-fang, Q. and Ya-ping, F. 1983. Somaclonal genetics of rice, Oryza sativa L. Theor. Appl. Genet. 67: 67–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ahloowalia, B.S. (1986). Limitations to the Use of Somaclonal Variation in Crop Improvement. In: Somaclonal Variations and Crop Improvement. Advances in Agricultural Biotechnology, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7733-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7733-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8295-4

  • Online ISBN: 978-94-015-7733-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics