Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 48))

Abstract

Abstract

The intriguing enhancement of optical activity when a racemic (and “kinetically labile”) metal complex of the type (ML3)2+ (M = Zn,Cd, Ni,Co etc; L= 2,2′-bipyridyl or 1,10-phenanthroline) is added to a solution of a cationic ‘environment’ compound (usually an alkaloid) is the best example of the ‘Pfeiffer effect’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The International Dictionary of Physics and Chemistry, 2nd edition, 833: van Nostrand, Princeton, 1961.

    Google Scholar 

  2. The name was attached to the effect in 1954 by R.C. Brasted and F.P. Dwyer, at a meeting in Indiana: see reference L2J in my present reference [3]. Unfortunately, the name has been taken to include differing classes of interacting compounds by different groups of students. Arguably, it might be restricted to those systems studied by Pfeiffer himself (all containing 2,2’-bipyridyl or 1,10-phenanthroline).

    Google Scholar 

  3. R.C. Brasted, V.J. Landis, E.J. Kuhajek, P.E.R. Nordquist, and L. Mayer,in “Coordination Chemistry”, ed. by S. Kirschner, Plenum Press, N.Y., p42 (1969).

    Google Scholar 

  4. P. Pfeiffer and K. Quehl, Chem. Ber., 64, 2667 (1931).

    Google Scholar 

  5. E.E. Turner and M.M. Harris, Quart. Revs., 1, 299 (1947).

    Article  Google Scholar 

  6. P.E. Schipper, Inorganica Chim. acta, 12, 199 (1975).

    Article  CAS  Google Scholar 

  7. P.E. Schipper, J. Amer. Chem. Soc., 100, 1079 (1978) and references therein.

    Article  CAS  Google Scholar 

  8. E.B.R. Prideaux and F.T. Winfield, J. Chem. Soc., 1587 (1930).

    Google Scholar 

  9. S. Kirschner, J. Indian Chem. Soc., 51, 28 (1974).

    CAS  Google Scholar 

  10. S. Kirschner, Record Chem. Progress, 32, 29 (1971).

    CAS  Google Scholar 

  11. S. Kirschner and K. Magnell,in “Coordination Chemistry” (ed. S. Kirschner) Plenum Press, New York, p64 (1969).

    Google Scholar 

  12. H. Yoneda, K. Miyoshi, and S. Suzuki, Chem. Letters, 349 (1974): K. Miyoshi, K. Sakata, and H. Yoneda, Chemistry Letters, 1087 (1974): K. Miyoshi, Y. Kuroda, and H. Yoneda, J. Phys. Chem., 80, 270 (1976)

    Article  CAS  Google Scholar 

  13. K. Miyoshi, K. Sakata, and H. Yoneda, J. Phys. Chem., 80, 649 (1976).

    Article  CAS  Google Scholar 

  14. B.E. Evans and R.V. Wolfenden, Biochemistry, 12, 392 (1973).

    Article  CAS  Google Scholar 

  15. B. Bosnich and D.W. Watts, Inorg. Chem., 14, 41 (1975)

    Google Scholar 

  16. R.D. Gillard and P.A. Williams, Transition Metal Chem., 2, 14, (1977).

    Article  CAS  Google Scholar 

  17. R.D. Gillard, L.A.P. Kane-Maguire, and P.A. Williams, J. Chem. Soc. (Dalton) 1039 (1977).

    Google Scholar 

  18. J.W. Bunting and W.G. Meathrel, Canadian J. Chem.,52, 975 (1974)

    Article  CAS  Google Scholar 

  19. M.S. Henry and M.Z. Hoffman, J. Amer. Chem. Soc., 99, 5201 (1977).

    Article  CAS  Google Scholar 

  20. D.J. Norris, J.W. Bunting, and W.G. Meathrel, Canadian J. Chem., 55, 2601 (1977).

    Article  CAS  Google Scholar 

  21. R.D. Gillard and J.R. Lyons, Chem. Comm., 873 (1973).

    Google Scholar 

  22. W.S. Walters, unpublished work.

    Google Scholar 

  23. E.J. Kuhajek, Ph.D. thesis, Univ. of Minnesota (1964).

    Google Scholar 

  24. K. Miyoshi, Y. Kuroda, H. Okazaki, and H. Yoneda, Bull. Chem. Soc. Japan, 50, 1476 (1977).

    Article  CAS  Google Scholar 

  25. T. Fujiwara and Y. Yamamoto, XVII International Conference on Coord. Chem., Hamburg, 166 (1976).

    Google Scholar 

  26. P. Pfeiffer and K. Nakatsuka, Chem. Ber., 66, 410 (1933).

    Google Scholar 

  27. L.A. Mayer and R.C. Brasted, J. Coord. Chem., 3, 85 (1973).

    Article  CAS  Google Scholar 

  28. This value refers to the ratio K=[Bipy.H2O]/[Bipy].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gillard, R.D. (1979). The Origin of the Pfeiffer Effect. In: Mason, S.F. (eds) Optical Activity and Chiral Discrimination. NATO Advanced Study Institutes Series, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7644-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7644-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8355-5

  • Online ISBN: 978-94-015-7644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics