Skip to main content

The Role of Lattice Oxygen in the Oxidative Coupling of Methane

  • Chapter
Methane Conversion by Oxidative Processes

Abstract

The nature of the oxide site responsible for the oxidative coupling of methane has been the subject of much speculation with respect to the reaction mechanism. Under methane coupling conditions, various oxygen species may be present on a catalyst surface and thus the potential oxidants for methane and the intermediates formed from methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, S.K. 1990. Oxidative coupling of methane: Catalytic studies over metal oxides. Ph.D. Dissertation, University of Pittsburgh.

    Google Scholar 

  • Bielanski, A., and J. Haber. 1979. Oxygen in catalysis on transition metal oxides. Catal. Rev.-Sci. Eng. 19: 1–41.

    Article  CAS  Google Scholar 

  • Biloen, P. 1983. Transient kinetic methods. J. Mol. Catal. 21: 17–24.

    CAS  Google Scholar 

  • Biloen, P., J.N. Helle, F.G.A. van den Berg, and W.M.H. Sachtler. 1983. On the activity of Fischer-Tropsch and methanation catalysts: A study utilizing isotopic transients. J. Catal. 81: 450–63.

    Article  CAS  Google Scholar 

  • Boudart, M. 1968. Kinetics of Chemical Processes. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Brown, I.B., and W.R. Patterson. 1983. Reactivity of tin oxide and some antimony-tin oxide catalysts for the oxidation of methane and the isotopic exchange of oxygen: An examination of the role of adsorbed and lattice oxygen in catalytic oxidation. J. Chem. Soc. , Faraday Trans. 1 79: 1431.

    Google Scholar 

  • Carslaw, H.S., and J.C. Jaeger. 1959. Conduction of Heat in Solids. New York: Oxford University Press.

    Google Scholar 

  • Cromer, D.T. 1957, The crystal structure of monoclinic Sm2O3. J. Chem. Soc. , Chem. Commun. 61: 753–5.

    CAS  Google Scholar 

  • Dean, J.A., ed. 1985. Lange’s Handbook of Chemistry, pp. 3–121. New York: McGraw-Hill.

    Google Scholar 

  • Furusawa, T., M. Suzuki, and J.M. Smith. 1976. Rate parameters in heterogeneous catalysis by pulse techniques. Catal. Rev.-Sci. Eng. 13 (1): 43–76.

    Article  CAS  Google Scholar 

  • Happel, J. 1986. Isotopic Assessment of Heterogeneous Catalysis. New York: Academic Press.

    Google Scholar 

  • Kofstad, P. 1972. Nonstoichiometry, Diffusion, and Electronic Conductivity in Binary Metal Oxides. New York: Wiley-Interscience.

    Google Scholar 

  • Maatman, R.W. 1980. Site density and entropy criteria in identifying rate-determining steps in solid-catalyzed reactions. Adv. Catal. 29: 97–148.

    Article  CAS  Google Scholar 

  • Oishi, Y., and K. Ando. 1984. Oxygen diffusion in MgO and Al2O3. In Structure and Properties of MgO and Al2O3 Ceramics, ed. Oishi, Y., and K. Ando, pp. 379–93. American Ceramic Society.

    Google Scholar 

  • Oishi, Y., and W.D. Kingery. 1960. Oxygen diffusion in periclase crystals. J. Chem. Phys. 33: 905–6.

    Article  CAS  Google Scholar 

  • O’Keeffe, M., and W.J. Moore. 1961. Diffusion of oxygen in single crystals of nickel oxide. J. Chem. Soc. , Chem. Commun. 65: 1438–9.

    Google Scholar 

  • Otsuka, K., A.A. Said, K. Jinno, and T. Komatsu. 1987. Peroxide anions as possible active species in the oxidative coupling of methane. Chem. Lett. 77–8.

    Google Scholar 

  • Parker, I.B., and W.R. Patterson. 1983. Oxidation of methane with oxygen-18: A method for the quantitative investigation of the activities of adsorbed and lattice oxygen in metal oxide catalysts. J. Chem. Soc, Faraday Trans. 1 79: 1421–30.

    Google Scholar 

  • Peil, K.P. 1990. Elucidation of reaction pathways and identification of active sites in the oxidative coupling of methane. Ph.D. Dissertation, University of Pittsburgh.

    Google Scholar 

  • Peil, K.P., J.G. Goodwin, Jr., and G. Marcelin. 1989. An examination of the oxygen pathway during methane oxidation over a Li/MgO catalyst. J. Phys. Chem. 93: 5977–9.

    Article  CAS  Google Scholar 

  • Peil, K.P., J.G. Goodwin, Jr., and G. Marcelin. 1991a. Surface phenomena during the oxidative coupling of methane over Li/MgO. J. Cat. 131: 143

    Article  CAS  Google Scholar 

  • Peil, K.P., J.G. Goodwin, Jr., and G. Marcelin. 1991b. Steady-state vs. non-steadystate transient kinetic analysis of surface coverages during the oxidative coupling of methane. J. Cat. In press.

    Google Scholar 

  • Soong, Y., K. Krishna, and P. Biloen. 1986. Catalyst aging studied with isotopic transients: Methanation over Raney nickel. J. Catal. 97: 330–43.

    Article  CAS  Google Scholar 

  • Stephanopoulos, G. 1984. Chemical Process Control: An Introduction to Theory and Practice, p. 180. Englewood Cliffs, NJ.: Prentice-Hall.

    Google Scholar 

  • Stone, G.D., G.R. Weber, and L. Eyring. 1968. Self-diffusion of oxygen in neodymium and samarium sesquioxide. In Mass Transport in Oxides, ed. J.B. Wachtman, Jr., and A.D. Franklin, pp. 179–86. National Bureau of Standards Special Publication 296. Washington, DC: US Government Printing Office.

    Google Scholar 

  • Tamaru, K. 1978. Dynamic Heterogeneous Catalysis. New York: Academic Press.

    Google Scholar 

  • Templeton, D.H., and C.H. Dauben. 1954. Lattice parameters of some rare earth compounds and a set of crystal radii. J. Chem. Soc., Chem. Commun. 5237–9.

    Google Scholar 

  • Wang, J.-X., and J.H. Lunsford. 1986. Characterization of [Li +O-] centers in lithium doped MgO catalysts. J. Phys. Chem. 90: 5883–7.

    Article  CAS  Google Scholar 

  • Yang, C.-H., Y. Soong, and P. Biloen. 1984. Abundancy and reactivity of surface intermediates in methanation, determined with transient kinetic methods. In Proceedings of the 8th International Congress in Catalysis, vol. 2, pp. 3–14.

    Google Scholar 

  • Yang, C.-H., Y. Soong, and P. Biloen. 1985 A comparison of nickel-and platinum-catalyzed methanation utilizing transient-kinetic methods. J. Catal. 94: 306–9.

    Article  CAS  Google Scholar 

  • Zhang, X., and P. Biloen. 1986. A transient kinetic observation of chain growth in the Fischer-Tropsch synthesis. J. Catal. 98: 468–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. E. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peil, K.P., Marcelin, G., Goodwin, J.G. (1992). The Role of Lattice Oxygen in the Oxidative Coupling of Methane. In: Wolf, E.E. (eds) Methane Conversion by Oxidative Processes. Van Nostrand Reinhold Catalysis Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7449-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7449-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7451-8

  • Online ISBN: 978-94-015-7449-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics