Skip to main content

Feldspars and the Thermal History of Igneous Rocks

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 137))

Abstract

Development of alkali feldspars in igneous rocks can be considered in three stages: magmatic, involving crystal growth from the melt; subsolidus or postmagmatic, involving coherent exsolution and development of regular, strain-controlled crypto or microperthites; and deuteric or hydrothermal involving feldspar-fluid interactions which give rise to irregular coarse microperthites. The interplay of crystallization temperature, cooling rate, deformation, bulk composition and deuteric interactions leads to the variety in alkali feldspar textures.

It is doubtful whether equilibrium has been attained in experimental determinations of ternary feldspar relationships, and features of the system which may be deduced from natural assemblages are discussed. Experimental work does not at present provide a reliable geothermometer, and thermometers based on thermodynamic mixing properties will require ternary mixing parameters, at present unavailable.

Unless abundant fluids are present, alkali feldspars probably exsolve by spinodal decomposition even at low cooling rates. The observed lamellar periodicities in simple crypto-perthites from relatively rapidly cooled rocks agree well with those calculated from laboratory coarsening experiments. More complex cryptoperthites occur in plutonic rocks and their periodicities are much finer scale than predicted from their calculated cooling rates, probably because Al–Si ordering, and twinning, in the coherent framework slow coarsening. Their periodicity has been shown to vary logarithmically with distance from the roof in the only pluton so far investigated. HRTEM shows that coherency is preserved throughout coarsening even in optically visible braid perthites, and cryptoperthite morphologies can best be explained as a result of minimization of coherent elastic energy in intergrowths undergoing ordering. Dislocations have been seen in only either An-rich crypto-perthites with straight lamellae, probably because An blocks interface migration into orientations with minimum strain,or in very Or-rich feldspars. Interactions with deuteric or hydrothermal fluids cause ‘catastrophic coarsening’ which may be shown to cut across fully ordered coherent exsolution textures and therefore occurred at T<400°C. Little is known about the mechanisms at this stage.

Experimental studies of ordering have demonstrated the importance of fluids and their composition, but the exact nature of the polymorphism of albite remains an outstanding problem. Sanidine to microcline represents an essentially temperature dependent series, but TEM shows that orthoclase is a fine ‘tweed’ texture of ordered-antiordered domains which remains kinetically stranded unless caused to coarsen (to the ‘tartan’ texture of microcline) by interaction with fluids and/ or deformation. Microcline formation in coherent cryptoperthites is facilitated by coherency with an already triclinic Ab-rich phase. Framework order-disorder is not a good guide to thermal events in cooling rocks, although it appears to be valuable as a marker in prograde metamorphism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABBOTT, R. N. (1978). Peritectic reactions in the system An-Ab—Or—Qz—H20. Canad. Mineral., 16, 245 – 256.

    Google Scholar 

  • ABERDAM, D. (1965). Utilisation de la microscopie électronique pour l’étude des feldspaths. Observations sur des microperthites. Sci.Terre, mémoire 6, 76pp.

    Google Scholar 

  • ANDERSON, J. G. (1974). The geology of Alángorssuaq, Northern Nunarssuit Complex, S. Greenland.Unpubl. Ph.D. Thesis, University of Aberdeen, Scotland.

    Google Scholar 

  • BACHINSKI, S. W. and MULLER, G. (1971). Experimental determination of the microcline—low albite solvus.J.Petrol. 12, 453 – 462.

    Google Scholar 

  • BALRIDGE, W. S., CARMICHAEL, I. S. E. and ALBEE, A. L. (1981). Crystallization paths of leucite bearing lavas: examples from Italy.Contrib. Mineral. Petrol., 76, 321 – 335.

    Google Scholar 

  • BARNES, H. L. and ERNST, W. A. (1963). Ideality and ionization in hydrothermal fluids: the system MgO—H2O—NaOH.Amer. J.Sci., 261. 129 – 150.

    Google Scholar 

  • BARTH, T. F. W. (1934). Temperaturen i Lava og magmamasser, sam et nytt geologisk termometer. Naturen. 6, 187 – 192

    Google Scholar 

  • BAMBAUER, H. U. and BERNOTAT, W. H. (1982). The microcline/ sanidine transformation isograd in metamorphic regions. I. Composition and structural state of alkali feldspars from granitoid rocks of two N—S traverses across the ‘Aar Massif’ Swiss Alps. Schweiz. mineral. petrogr. Mitt. 62, 185–230.

    Google Scholar 

  • BECKER, S. M. (1981). Alakli-feldspar variation in the Klokken syenite.Progress in Experimental Petrology. Fifth Progress Report of Research Supported by N.E.R.C., 1978 – 1980, NERC Publications Series D, No. 18, 224 – 226.

    Google Scholar 

  • BERNOTAT, W. H. and BAMBAUER, H. U. (1982). The microcline/ sanidine transformation isograd in metamorphic regions. II. The region of Lepontine metamorphism, Central Swiss Alps. Schweiz mineral. petrogr. Mitt.62, 231 – 244.

    Google Scholar 

  • BERNOTAT, W. H. and MORTEANI, G. (1982). The microcline/ sanidine transformation isograd in metamorphic regions: Western Tauern Window and Merano—Mules – Anterselva complex (Eastern Alps). Am. Mineral, 67, 43 – 53.

    Google Scholar 

  • BLASI, A. (1980). Different behaviour of Δ(bc) and Δ(b*c*) in alkali feldspar. N. Jb.Mineral. Abh., 138, 109 – 121.

    Google Scholar 

  • BLASI, A. (1982). Appraisal of the Ferguson method and the linear model using Δ(bc), Δ(b*c*), Δ(αy), Δ(α*γ*) to estimate tetrahedral Al-contents in alkali feldspar.Mineral. Mag., 46, 465 – 468.

    Google Scholar 

  • BLASI, A., DE POL BLASI, C. and ZANAZZI, P. F. (1981). Structural study of a complex microperthite from anatexites at Mt. Caval, Argentera Massif, Maritime Alps. N. Jb. Mineral. Abh., 142, 71 – 90.

    Google Scholar 

  • BLASI, A., BRAJKOVIC, A. and DE POL BLASI, C. (1982). Highly ordered monoclinic K-feldspars from Haut Boréon Anatexites, Argentera Massif, Maritime Alps.Tschermaks Min.Petr. Mitt. 29, 241 – 263.

    Google Scholar 

  • BOLLMANN, W. (1967). On the geometry of grain and phase boundaries I. General theory.Phil. Mag. 16, 363 – 383.

    Google Scholar 

  • BOLLMANN, W. and NISSEN, H. U. (1968). A study of optimal phase boundaries: The case of exsolved alkali feldspars.Acta Cryst., A24, 546 – 557.

    Google Scholar 

  • BONIN, B. and MARTIN, R. F. (1974). Coexisting alkali feldspars in felsic members of the Cauro-Bastelica ring complex, Corsica Lithos 7, 23 – 28.

    Google Scholar 

  • BORDET, P. and CHAURIS, L. (1965). Triclinisme lié à une zone d’écrasement dans les feldspaths potassiques du granite de 1’Aber-Ildut (Finistére).Bull. Soc.Franç. Minér. Crist., 88, 527 – 528.

    Google Scholar 

  • BROWN, W. L. (1983). Étude par microscopie électronique en haute resolution de la texture cohérente des cryptoperthites en association diagonale et origine de certaines macles du microcline de type—M. C.R. Acad. Sci.Paris, t. 296, serie II, 143 – 148.

    Google Scholar 

  • BROWN, W. L. and PARSONS, I. (1981). Towards a more practical two feldspar geothermometer.Contrib. Mineral.Petrol. 76, 369 – 377.

    Google Scholar 

  • BROWN, W. L. and PARSONS, I. (1983). Nucleation on perthiteperthite boundaries and exsolution mechanisms in alkali feldspars.Phys. Chem.Minerals. 10, 55,– 61. BROWN

    Google Scholar 

  • BROWN, W. L. and PARSONS, I. (1984). Exsolution and coarsening mechanisms and kinetics in an ordered cryptoperthite series.Contrib. Mineral. Petrol.

    Google Scholar 

  • BROWN, W. L. and PARSONS, I. (in prep). The nature of potassium feldspar, exsolution microtextures and development of dislocations as a function of composition in perthitic alkali feldspars.

    Google Scholar 

  • BROWN, W. L. and WILLAIME, C. (1974). An explanation of exsolution orientations and residual strain in cryptoperthites. In:The Feldspars. Eds. W. S. MacKenzie and J. Zussman, Manchester Univ. Press., 440 – 459.

    Google Scholar 

  • BROWN, W. L., WILLAIME, C. and GUILLEMIN, C. (1972). Exsolution selon l’association diagonale dans une cryptoperthite: étude par microscope électronique et diffraction des rayons X. Bull. Soc. franç. Miner. Crist, 95, 429 – 436.

    Google Scholar 

  • BROWN, W. L., BECKER, S. M. and PARSONS, I. (1983). Cryptoperthites and cooling rate in a layered syenite pluton: A chemical and TEM study.Contrib. Mineral. Petrol. 82, 13 – 25.

    Google Scholar 

  • BRØGGER, W. C. (1890). Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit-und Nephelinsyenite. Feldspathgruppe.Zeits. Krist. 16, 521 – 564.

    Google Scholar 

  • BUTTERFIELD, A. W. (1980). Geology of the Western part of the Nunarssuit alkaline complex, South Greenland.Unpubl. Ph.D. Thesis,University of Aberdeen, Scotland.

    Google Scholar 

  • CAILLERE, S. and KRAUT, F. (1960). Sur la répartition des feldspaths potassiques dans les roches éruptives et métamorphiques de la region d’Avallon.Bull. Soc.franç. Minér. Crist., 83, 21 – 23.

    Google Scholar 

  • CAHN, J. W. (1968) Spinodal decomposition.Trans. Metall. Soc. A.I.M.E. 242, 166 – 180.

    Google Scholar 

  • CARMICHAEL, I.S.E., TURNER, F. J. and VERHOOGEN, J. (1974).Igneous Petrology. McGraw-Hill, New York.

    Google Scholar 

  • CARSLAW, H. S. and JAEGER, J. C. (1959).Conduction of heat in solids., 2nd ed. Oxford University Press, London. CARTER, S. (1978). Electron microscopic study of phase transformations in feldspars.Unpubl. Ph.D. thesis, Univer. Manchester.

    Google Scholar 

  • CHERRY, M. E. and TREMBATH, L. T. (1979). Order-disorder paths of alkali feldspars. Am.Mineral. 64, 66 – 70.

    Google Scholar 

  • CHRISTIE, 0. H. J. (1962). Observations on natural feldspars: Randomly disordered structures and a preliminary suggestion to a plagioclase thermometer.Norsk Geol. Tidsskr. Bd. 42.2 (Feldspar Vol.)., 383 – 388.

    Google Scholar 

  • CHRISTOFFERSEN, R. and SCHEDL, A. (1980). Microstructure and thermal history of cryptoperthites in a dyke from Big Bend, Texas.Am. Mineral. 65, 444 – 448.

    Google Scholar 

  • CHRISTOFFERSEN, R., YUND, R. A. and TULLIS, J. (in press). Interdiffusion of K and Na in alkali feldspars: diffusion couple experiments. Am.Mineral.

    Google Scholar 

  • COLLERSEN, K. D. (1976). Composition and structural state of alkali feldspars from high grade metamorphic rocks, central Australia. Am. Mineral. 61, 200–211.

    Google Scholar 

  • DAL NEGRO, A., DE PIERI, R. and QUARENI, S. (1978). The crystal structures of nine K-feldspars from the Adamello Massif (Northern Italy).Acta Cryst. B34, 2699–2707.

    Google Scholar 

  • DAY, H. W. and BROWN, V. M. (1980). Evolution of perthite composition and microstructure during progressive metamorphism of hypersolvus granite, Rhode Island, U.S.A.Contrib. Mineral. Petrol., 72, 353〓365

    Google Scholar 

  • DE PIERI, R., DE VECCHI, G., GREGNANIN, A., and PICCIRILLO, E. M. (1977). Trachyte and rhyolite feldspars from the Euganean Hills (Northern Italy). Mem. Sci. Geol. Univ. Padova 32, 1–22.

    Google Scholar 

  • EMELEUS, C. H. and SMITH, J. V. (1959). The alkali feldspars VI. Sanidine and orthoclase perthites from the Slieve Gullion area, Northern Ireland. Am.Mineral. 44, 1187–1208.

    Google Scholar 

  • EGGLETON, R. A. (1979). The ordering path for igneous K-feldspar megacrysts. Am.Mineral. 64, 906–911.

    Google Scholar 

  • EGGLETON, R. A. and BUSECK, P. R. (1980). The orthoclase-microcline inversion : A high-resolution transmission electron microscope study and strain analysis.Contrib. Mineral. Petrol. 74. 123〓133.

    Google Scholar 

  • EULER, R. and HELLNER, E. (1961). Hydrothermale und röntgeno-graphische Untersuchungen an gesteinsbildenden Mineralen, VI. Uber hydrothermal triklinen K-Feldspat. Z. Krist. 115. 433–438.

    Google Scholar 

  • FERGUSON, R. B. (1979). Whence orthoclase and microcline? A crystallographer’s interpretation of potassium feldspar phase relations.Canad. Mineral. 17, 515〓525.

    Google Scholar 

  • FERGUSON, R. B. (1980). From unit-cell parameters to Si/A1 distribution in K—feldspars.Canad. Mineral. 18, 443–458.

    Google Scholar 

  • FERGUSON, R. B. (1981). From unit-cell parameters to Si/A1 distribution in K-feldspars : corrigendum.Canad. Mineral. 19, 363〓365.

    Google Scholar 

  • FERGUSON, A. K. and CUNDARI, A. (1982). Feldspar crystallization trends in leucite-bearing and related assemblages.Contrib. Mineral. Petrol., 81, 212–218.

    Google Scholar 

  • FERRY, J. M. (1978). Fluid interaction between granite and sediment during metamorphism, south-central Maine.Amer. J. Sci. 278, 1025–1056.

    Google Scholar 

  • FITZ GERALD, J. D. and MCLAREN, A. C. (1982). The microstructures of microcline from some granitic rocks and pegmatites.Contrib. Mineral. Petrol. 80, 219–229.

    Google Scholar 

  • FLEET, M. E. (1982). Orientation of phase and domain boundaries in crystalline solids. Am. Mineral. 67, 926〓936.

    Google Scholar 

  • FLEET, S. G. and RIBBE, P. H. (1963). An electron-microscope investigation of a moonstone.Phil. Mag. (Lond.) ser 8 8, 1179–1187.

    Google Scholar 

  • FLEHMIG, W. (1977). The synthesis of feldspars at temperatures between 0° – 80°C, their ordering behaviour and twinning.Contrib. Mineral. Petrol. 65,1–9.

    Google Scholar 

  • GANDAIS, M., GUILLEMIN, C. and WILLAIME, C. (1974). Study of boundaries in cryptoperthites.Electron Microscopy 1974. Eighth international congress on electron microscopy. The Australian Academy of Science, Canberra, 508〓509.

    Google Scholar 

  • GOLDSMITH, J. R. and NEWTON, R. C. (1974). An experimental determination of the alkali feldspar solvus. In: TheFeldspars. Eds. W. S. MacKenzie and J. Zussman. Manchester Univ. Press, 337〓359.

    Google Scholar 

  • GRUNDY, H. D. and BROWN, W. L. (1969). A high temperature X-ray study of the equilibrium forms of albite.Mineral. Mag. 37, 173–180.

    Google Scholar 

  • GUIDOTTI, C. V. (1978). Muscovite and K-feldspar from two-mica adamellite in northwestern Maine : composition and petro-genetic implications. Am. Mineral. 63, 750–753.

    Google Scholar 

  • GUIDOTTI, C. V., HERD, H. H. and TUTTLE, C. L. (1973). Composition and structural state of K-feldspars from K-feldspar + sillimanite grade rocks in northwestern Maine. Am. Mineral. 58, 705〓716.

    Google Scholar 

  • HAMILTON, D. L. and MACKENZIE, W. S. (1965). Phase equilibrium studies in the system NaA1SiO4 (nepheline)—KA1SiO4 (Kalsilite)—SiO2- H2O.Mineral. Mag. 34, 214〓231.

    Google Scholar 

  • HENDERSON, C. M. B. and GIBB, F. G. F. (1983). Felsic mineral crystallisation trends in differentiating alkaline basic magmas. Contrib. Mineral. Petrol. 84, 355〓364.

    Google Scholar 

  • HUDSON, S. and MAZO, R. M. (1983). The effects of aluminiumsilicon ordering on phaseseparation for a two dimensional model of alkali feldspars.Phys. Chem.Minerals 9, 9–13.

    Google Scholar 

  • HUSTON, E. L., CAHN, J. W. and HILLIARD, J. E. (1966). Spinodal decomposition during continuous cooling.Acta. Metall. 14, 1053–1062.

    Google Scholar 

  • JAEGER, J. C. (1968). Cooling and solidification of igneous rocks. In : Basalts. Eds. Hess H. H. and Poldervaart, A. Wiley, New York. 503〓536.

    Google Scholar 

  • JOHANNES, W. (1978). Melting of plagioclase in the system Ab-AnH2O and Qz-Ab-An-H2O at PH20 = 5kbars, an equilibrium problem. Contrib. Mineral. Petrol. 66, 295–303.

    Google Scholar 

  • JOHANNES, W. (1979). Ternary feldspars : Kinetics and possible equilibria at 800°C. Contrib. Mineral. Petrol. 68, 221–230.

    Google Scholar 

  • JOHANNES, W. (1980). Metastable melting in the granite system Qz- Or—Ab—An—H2O. Contrib. Mineral. Petrol. 72, 73–80.

    Google Scholar 

  • KERRICK, D. M. (1969). K-feldspar megacrysts from a porphyritic quartz mozonite,Central Sierra Nevada, California. Am.Mineral. 54, 839–848.

    Google Scholar 

  • KROLL, H. (1973). Estimation of the Al,Si distribution of feldspars from the lattice translations Tr 110 and Tr 110 I. Alkali feldspars. Contrib. Mineral. Petrol. 39, 141–156.

    Google Scholar 

  • KROLL, H. and BAMBAUER, H.U. (1981). Diffusive and displacive transformation in plagioclase and ternary feldspar series. Am.Mineral. 66, 763–769.

    Google Scholar 

  • KROLL, H., BAMBAUER, H.-U. and SCHIRMER, U. (1980). The high albite—monalbite and analbite—monalbite transitions. Am. Mineral. 65, 1192–1211.

    Google Scholar 

  • LAVES, F. (1950). The lattice and twinning of microcline and other potash feldspars.Journ. Geol. 58, 548〓571•

    Google Scholar 

  • LAGACHE, M. and WEISBROD, A. (1977). The system : Two alkali feldspars—KC1—NaC1—H20 at moderate to high temperatures and low pressures. Contrib. Mineral.Petrol. 62, 77–102.

    Google Scholar 

  • LORIMER, G. W. and CHAMPNESS, P. E. (1973). The origin of the phase distribution in two perthitic alkali feldspars.Phil. Mag. 28, 1391–1403.

    Google Scholar 

  • LUTH, W. C. and TUTTLE, O. F. (1966). The alkali feldspar solvus in the system Na2O—K20—A1203—Si02—H20. Am.Mineral. 51, 1359〓1373.

    Google Scholar 

  • LUTH, W. C., MARTIN, R. F. and FENN, P. M. (1974). Peralkaline alkali feldspar solvi. In: TheFeldspars. Eds. W. S. MacKenzie, J. Zussman. Manchester Univ. Press 297–312

    Google Scholar 

  • MACKENZIE, W. S. (1954). The orthoclase—microcline inversion. Mineral.Mag. 30, 354〓366.

    Google Scholar 

  • MACKENZIE, W. S. (1957). The crystalline modifications of NaAlSi3O8.Amer. J. Sci. 255, 481–516.

    Google Scholar 

  • MACKENZIE, W. S. and SMITH, J. V. (1955). The alkali feldspars: I, Orthoclase microperthites. Am.Mineral, 40, 707–732.

    Google Scholar 

  • MACKENZIE, W. S. and SMITH, J. V. (1962). Single crystal X-ray studies of crypto and micro-perthites.Norsk geol. Tidsskr. Bd 42. 2 (Feldspar Vol.) 72–103.

    Google Scholar 

  • MALLARD, E. (1876). Explication de phénomènes optiques anomaux que presentent un grand nombre de substances cristallines.Annales desMines, 7eserie, Mem Tome X, 60–196 (especially 157–160).

    Google Scholar 

  • MARDON, D. and YUND, R. A. (1981). The effect of anorthite on exsolution rates and the coherent solvus for sanidine—high albite. Eos 62, V19.

    Google Scholar 

  • MARTIN, R. F. (1969). The hydrothermal synthesis of low albite.Contrib. Mineral. Petrol. 23, 323〓339•

    Google Scholar 

  • MARTIN, R. F. (1974a)• Controls of ordering and subsolidus phase relations in thealkali feldspars. In: TheFeldspars Eds. W. S. MacKenzie and J. Zussman. Manchester Univ. Press 313〓336.

    Google Scholar 

  • MARTIN, R. F. (1974b). The alkali feldspar solvus : the case for a first order break on the K-limb. Bull. Soc.franç. Minér Crist. 97, 346–355•

    Google Scholar 

  • MARTIN, R. F. and BONIN, B. (1976). Water and magma genesis : the association hypersolvus granite—subsolvus granite. Canad.Mineral. 14, 228–237.

    Google Scholar 

  • MASON, R. A. (1979). The ordering behaviour of albite in aqueous solutions at 1 kbar.Contrib. Mineral. Petrol. 68, 269–273.

    Google Scholar 

  • MASON, R. A. (1980a). The ordering behaviour of reedmergnerite, NaBSiO8.Contrib. Mineral. Petrol. 72, 329〓333.

    Google Scholar 

  • MASON, R. A. (1980b). Changes in the crystal morpnology of synthetic reedmergnerite (Na BSi3O8) during ordering experiments.Miner. Mag. 43, 905〓908.

    Google Scholar 

  • McCONNELL, J. D. C. (1965). Electron optical study of effects associated with partial inversion in a silicate phase. Phil.Mag. 11, 1289–1301.

    Google Scholar 

  • McCONNELL, J. D. C. (1969). Electron optical study of incipient exsolution and inversion phenomena in the system NaA1Si3O8—KA1Si O Phil.Mag. 19, 221–229.

    Google Scholar 

  • McCONNELL,8J. D. C. (1971). Electron—optical study of phase transformations. Miner. Mag. 38, 1–20.

    Google Scholar 

  • McCORMAC, M. (1974).The variation in the structural state of the K—feldspars in the Lochnagar intrusion. Unpubl. B.Sc. dissertation. Univ. of Aberdeen.

    Google Scholar 

  • McKIE, D. and McCONNELL, J. D. C. (1963). The kinetics of the lowhigh transformation in albite I. Amelia albite under dry conditions. Mineral. Mag. 33, 581〓588.

    Google Scholar 

  • McLAREN, A. C. (1974). Transmission electron microscopy of the feldspars. In:The Feldspars. Eds. W. S. MacKenzie, and J. Zussman. Manchester Univ. Press. 378–423.

    Google Scholar 

  • McLAREN, A. C., COOK, R. F., HYDE, S. T. and TOBIN, R. C. (1983). The mechanism of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz.Phys. Chem. Mineral. 9, 79–94.

    Google Scholar 

  • NASH, W. P., CARMICHAEL, I. S. E. and JOHNSON, R. W. (1969). The mineralogy and petrology of Mount Suswa, Kenya. J.Petrol. 10, 409〓439.

    Google Scholar 

  • NEWTON, R. C., CHARLU, T. V. and KLEPPA, O. J. (1980). Thermochemistry of high structural state plagioclases.Geochim. Cosmochim. Acta, 44, 933–941.

    Google Scholar 

  • NĚMEC, D. (1976). Triclinicty of potassium feldspar in the Třebíč-Meziřiči Massif (Western Moravia).Tschermaks Min. Petr. Mitt. 23, 167–174.

    Google Scholar 

  • NĚMEC, D. (1978). Obliquity of potassium feldspars in the differentiation series of minettes.Tschermaks Min. Petr.Mitt. 25, 63–69.

    Google Scholar 

  • O’HARA, M. J. and YARWOOD, G. (1978). High pressure—temperature point on an Archaen geotherm, implied magma genesis by crustal anatexis, and consequences for garnet-pyroxene geothermometry and barometry. Phil.Trans. R. Soc.London A 288, 441–456.

    Google Scholar 

  • O’NEIL, J. R. and TAYLOR, H. P. (1967). The oxygen isotope and cation exchange chemistry of feldspars. Am.Mineral. 52, 14141437.

    Google Scholar 

  • OWEN, D. C. and McCONNELL, J. D. C. (1971). Spinodal behaviour in an alkali feldspar.Nature 230 118–119.

    Google Scholar 

  • PARSONS, I. (1965). The feldspathic syenites of the Loch Ailsh intrusion, Assynt, Scotland. J. Petrol. 6, 365–394.

    Google Scholar 

  • PARSONS, I. (1968). An experimental study of ordering in sodiumrich alkali feldspars.Mineral. Mag. 36, 1061–1077.

    Google Scholar 

  • PARSONS, I. (1978a). Feldspars and fluids in cooling plutons.Mineral. Mag. 42, 1–17.

    Google Scholar 

  • PARSONS, I. (1978b). Alkali feldspars : which solvus?Phys. Chem. Minerals 2, 199–213.

    Google Scholar 

  • PARSONS, I. (1979). The Klokken gabbro-syenite complex, South Greenland : cryptic variation and origin of inversely graded layering. J.Petrol. 20, 653〓694.

    Google Scholar 

  • PARSONS, I. (1980). Alkali-feldspar and Fe-Ti oxide exsolution textures as indicators of the distribution and subsolidus effects of magmatic ‘water’ in the Klokken layered syenite intrusion, South Greenland.Trans. Roy. Soc.Edinb. :Earth Sci. 71, 1–12.

    Google Scholar 

  • PARSONS, I. (1981a). Effect of pressure on the alkali feldspar solvus.Progress inExperimental Petrology. Fifth Progress Report ofResearch Supported bbyN.E.R.C., 1978–1980, NERC Publications Series D, No. 18, 222–224.

    Google Scholar 

  • PARSONS, I. (1981b). The Klokken gabbro-syenite complex, South Greenland : quantitative interpretation of mineral chemistry. J. Petrol. 22, 233〓260.

    Google Scholar 

  • PARSONS, I. and BOYD, R. (1971). Distribution of potassium feldspar polymorphs in intrusive sequences. Mineral. Mag.38, 295〓311.

    Google Scholar 

  • PARSONS, I. and BROWN, W. L. (1983). A TEM and microprobe study of a two perthite alkali gabbro : implications for the ternary feldspar system. Contrib.Mineral. Petrol. 82, 1–12.

    Google Scholar 

  • PARSONS, I. and BUTTERFIELD, A. W. (1981). Sedimentary features of the Nunarssuit and Klokken syenites, South Greenland. J.Geol. Soc. London, 138, 289–306.

    Google Scholar 

  • PATCHETT, P. J., van BREEMEN, O. and MARTIN, R. F. (1979). Sr isotopes and the structural state of feldspars as indicators of post-magmatic hydrothermal activity in continental dolerites. Contrib. Mineral. Petrol. 69, 65–73.

    Google Scholar 

  • POWELL, R. and POWELL, M. (1977). Plagioclase—alkali feldspar geothermometry revisited. Mineral. Mag. 41, 253〓256.

    Google Scholar 

  • PRINCE, E., DONNAY, G. and MARTIN, R. F. (1973). Neutron diffraction refinement of an ordered orthoclase structure.Am. Mineral. 58, 500–507.

    Google Scholar 

  • PUTNIS, A. and McCONNELL, J. D. C. (1980).Principles ofMineral Behaviour. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • RAASE, P. (1971). Zur Synthese und Stabilität der Albit-Modifikationen.Tschermaks Min.Petrol. Mitt. 16, 136〓155.

    Google Scholar 

  • RAASE, P. and MORTEANI, G. (1976). The potassic feldspar in metamorphic rocks from the western Hohe Tauern area, eastern Alps, Geol. Rundschau 65, 422–436.

    Google Scholar 

  • RAMBERG, I. B. (1972). Braid perthite in nepheline syenite pegmatite, Langesundfjorden, Oslo Region, Norway.Lithos, 5, 281306.

    Google Scholar 

  • ROBERTSON, R. C. R. and PARSONS, I. (1974). The Loch Loyal syenites.Scott. J. Geol. 10, 219–146.

    Google Scholar 

  • ROBINSON, P., ROSS, M., NORD., G. L., SMYTH, J. R. and JAFFE, H. W. (1977). Exsolution lamellae in augite and pigeonite : fossil indicators of lattice parameters at high temperature and pressure. Am. Mineral. 62, 857〓873.SCOTT, R. B., BACHINSKI, S. W. NESBITT, R. W. and SCOTT, M. R.

    Google Scholar 

  • Range of Al-Si ordering in sanidines from an ignimbrite cooling unit. Am. Mineral.56, 1208–1221.

    Google Scholar 

  • SECK, H. A. (1971a). Koexistierende Alkalifeldspate und Plagioklase im System NaA1Si3O8—KA1Si3O8—CaAl2Si208—H20 bei Temperaturen von 650° ois 900°C.NNeues Jahrb. Minera┴. Abh. 115, 315–345.

    Google Scholar 

  • SECK, H. A. (1971b). Der Einfluss des Drucks auf die Zusammensetzung koexistierender Alkalifeldspäte und Plagioklase in System NaA1Si3O8—KA1Si3O8—CaAl2Si2O8—H2O.Contrib. Mineral. Petrol.31, 67–86.

    Google Scholar 

  • SECK, H. A. (1972). The influence of pressure on the alkalifeldspar solvus from peraluminous and persilicic materials. Fortschr. Mineral. 49, 31–49.

    Google Scholar 

  • SENDEROV, E. E. (1975). Experimental Study of silicon and aluminium ordering phenomena in aluminosilicates.Bull. Soc.franç. Miner. Crist. 97, 393–402.

    Google Scholar 

  • SIPLING, P. J. and YUND, R. A. (1974). Kinetics of Al/Si disordering in alkali feldspars.Geochemical Transport and Kinetics, Carnegie Institution of Washington, 185〓193.

    Google Scholar 

  • SMITH, J. V. (1961). Explanation of strain and orientation effects in perthites. Amer. Mineral 46, 1489–1493.

    Google Scholar 

  • SMITH, J. V. (1974).Feldspar Minerals, vols. 1 and 2. Springer Verlag, Berlin.

    Google Scholar 

  • SMITH, J. V. and MACKENZIE, W. S. (1954). Further complexities in the lamellar structure of alkali feldspars.Acta. Cryst. 7, 380–381.

    Google Scholar 

  • SMITH, J. V. and MACKENZIE, W. S. (1959). The alkali feldspars V. The nature of orthoclase and microcline perthites, and observations concerning the polymorphism of potassium feldspar.Am. Mineral. 44, 1169–1186.

    Google Scholar 

  • SMITH, J. V. and MACKENZIE, W. S. (1961). Atomic, chemical and physical factors that control the stability of alkali feldspars,Cursillos conferencias, Instituto ‘Lucas Mallada’. C.S.I.C. (Espana) Fasc. VIII, 39〓52.

    Google Scholar 

  • SMITH, P. and PARSONS, I. (1974). The alkali-feldspar solvus at 1 kilobar water-vapour pressure.Mineral. Mag. 39, 747〓767.

    Google Scholar 

  • SPERA, F. (1980). Thermal evolution of plutons: a para-meterized approach.Science 207, 299〓301.

    Google Scholar 

  • STEIGER, R. H. and HART, S. R. (1967). The microcline-orthoclase transition within a contact aureole. Am.Mineral. 52, 87–116.

    Google Scholar 

  • STEWART, D. B. and ROSEBOOM, E. H. Jr. (1962). Lower temperature termination of the three phase region plagioclase—alkali feldspar—liquid. J.Petrol. 3, 280–315.

    Google Scholar 

  • STEWART, D. B. and WRIGHT, T. L. (1974). A1/Si order and symmetry of natural alkali feldspars, and the relationship of strained cell parameters to bulk composition.Bull. Soc.franc. Minéral. Crist. 97, 356〓377.

    Google Scholar 

  • STORMER, J. C. (1975). A practical two-feldspar geothermometer. Am.Mineral. 60, 667–674.

    Google Scholar 

  • THOMPSON, J. B. JR. (1969). Chemical reactions in crystals. Am.Mineral. 54, 341〓375.

    Google Scholar 

  • TIBBALLS, J. E. and OLSEN, A. (1977). An electron microscopic study of some twinning and exsolution textures in microcline amazonites. Phys. Chem. Minerals 1. 313– 24.

    Google Scholar 

  • TREMBATH, L. T. (1973). Hydrothermal synthesis of albite: the effect nf NaOH nn nhliquity. Miner. Mag

    Google Scholar 

  • TULLIS, J. (1975). Elastic strain effects in coherent perthitic feldspars. Contrib. Mineral. Petrol. 49, 83〓91.

    Google Scholar 

  • TUTTLE, O. F. (1952). Origin of the contrasting mineralogy of extrusive and plutonic salic rocks. J. Geol. 60, 107–124.

    Google Scholar 

  • TUTTLE, O. F. and BOWEN, N. L. (1958). Origin of granite in the light of experimental studies in the system Na Al Si3O8– K Al SiO8—SiO2—H2OGeol. Soc. Amer. Mem. 74.

    Google Scholar 

  • UPTON, B. G. J. (1962). Geology of Tugtutôq and neighbouring islands, South Greenland.Bull. GrØnlands geol. Unders 34, (Meddr. GrØnland 169, 8).

    Google Scholar 

  • VISWANATHAN, K. (1971). A new X-ray method to determine the anorthite content and structural state of plagioclases.Contrib. Mineral. Petrol. 30, 332〓335.

    Google Scholar 

  • VOLL, G. (1969). Klastische Mineralien aus den Sedimentserien der Schottischen Highlands und ihr Schicksal bei aufsteigender Regional- und Kontaktmetamorphose.Habilitationsschrift Techn. Univ. Berlin.

    Google Scholar 

  • VORMA, A. (1971). Alkali feldspars of the Wiborg rapakivi massif in south eastern Finland. Bull.Comm. Geol. Finland. 246, pp 70.

    Google Scholar 

  • WHITNEY, J. A. and STORMER J. C. JR. (1977). The distribution of NaA1Si3O8 between co-existing microcline and plagioclase and its effĕct on geothermometric calculations. Am.Mineral. 62, 687–691.

    Google Scholar 

  • WILLAIME, C. and BROWN, W. L. (1974). A coherent elastic model for the determination of the orientation of exsolution boundaries: application to the feldspars.Acta Cryst. A3O, 316〓331.

    Google Scholar 

  • WILLAIME, C. and BROWN, W. L. (in press). Orientation of phase and domain boundaries in crystalline solids: discussion. Am.Mineral.

    Google Scholar 

  • WILLAIME, C. and GANDAIS, M. (1972). Study of exsolution in alkali feldspars. Calculation of elastic stresses inducing periodic twins.Phys. Stat. Sol. A9, 529〓539.

    Google Scholar 

  • WILLAIME, C. and BROWN, W. L. and GANDAIS, M. (1973). An electron-microscopic and X-ray study of complex exsolution textures in a cryptoperthitic alkali feldspar. J. Mat. Sci. 8, 461–466.

    Google Scholar 

  • WINKLER, H. G. F., BOESE, M. and MARCOPOULOS, T. (1975). Low temperature granitic melts.Neues Jahrb. Mineral. Monatsh. 245–267.

    Google Scholar 

  • WINKLER, H. G. F., DAS, B. K. and BREITBARTH, R. (1977). Further data of low temperature melts existing on the quartz + plagio

    Google Scholar 

  • clase + liquid + vapour isobaric cotectic surface within the system Qz—Ab—Or—An—H2O.Neues Jahrb. M ineral. Monatsh. 241–247.

    Google Scholar 

  • WRIGHT, T. L. and STEWART, D. B. (1968). X-ray and optical study of alkali feldspar: I. Determination of composition structural state from refined unit cell parameters and 2V. Am. Mineral 53, 38〓87.

    Google Scholar 

  • YODER, H. S. JR., STEWART, D. B. and SMITH, J. R. (1957). Feldspars.Carnegie Inst. Wash.Yearb. 56, 206–214.

    Google Scholar 

  • YUND, R. A. (1983). Microstructure, kinetics and mechanisms of alkali feldspar exsolution. In: Ed. P.H.Ribbe., Feldspar Mineralo gy. Reviews in Mineralogy 2. Min. Soc. 177–202.

    Google Scholar 

  • YUND, R. A. and ANDERSON, T. F. (1978). Oxygen isotope exchange between feldspar and fluid as a function of fluid pressure. Geochim.Cosmochim. Acta 42, 235〓239.

    Google Scholar 

  • YUND, R. A. and ACKERMAND, D. (1979). Development of perthite microstructures in the Storm King granite, N. Y.Contrib. Mineral. Petrol. 70, 273〓280.

    Google Scholar 

  • YUND, R. A. and CHAPPLE, W. M. (1980). Thermal histories of two lava flows estimated from cryptoperthite lamellar spacings. Am. Mineral. 65, 438–443.

    Google Scholar 

  • YUND, R. A. and TULLIS, J. (1980). The effect of water, pressure and strain on Al/Si order-disorder kinetics in feldspar. Contrib.Mineral. Petrol. 72, 297–302.

    Google Scholar 

  • YUND, R. A. (1983a). Subsolidus phase relations in the alkali feldspars with emphasis on coherent phases. In: Ed. P. H.Ribbe, Feldspar Mineralogy. Reviews in Mineralogy 2 Min. Soc.Amer. 141–176.

    Google Scholar 

  • YUND, R. A. and TULLIS, J. (1983b). Strained cell parameters for coherent lamellae in alkali feldspars and iron—free pyroxenes. N.Jb. Miner. Mh., 22 34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parsons, I., Brown, W.L. (1984). Feldspars and the Thermal History of Igneous Rocks. In: Brown, W.L. (eds) Feldspars and Feldspathoids. NATO ASI Series, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6929-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6929-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6931-6

  • Online ISBN: 978-94-015-6929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics