Skip to main content

Chemistry, Occurrence and Paragenesis of Feldspathoids: A Review

  • Chapter
Feldspars and Feldspathoids

Part of the book series: NATO ASI Series ((ASIC,volume 137))

Abstract

Feldspathoids are a loosely-defined group of alkali alumino silicate minerals deficient in SiO2 with respect to feldspars. Commonly occurring felddspathoids are nepheline [Na,K)AlSiO4]; leucite UK,Na)AlSi2O6]; the melilite group comprising gehlenite (Ca2Al SiO7), akermanite (Ca2MgSi2O7), and soda melilite (NaCaAlSi2O7 ); and analcite (NaAlSi2O6·H2O). Less common varieties are sodalite [Na8 (Al6Si6O24 ) Cl2] , nosean [Na8 (Al6Si6O24) SO4] , hauyne [(Na,Ca)4–8(Al6Si6O24) (SO4,S1–2], cancrinite [(Na,Ca)7–8(Al6Si6O24)(CO3,SO4,Cl)1.5–12.0] and kalsilite [(K,Na)AlSiO4]. Many feldspathoids have complex major and trace element chemistry. Extensive solid solutions occur involving nepheline-kalsilite, and the melilites. Chemical variations are related to their parageneses and often provide the basis for geothermometers and for the identification of source regions of the magmas from which they crystallized.

Feldspathoids occur in a wide variety of alkali-rich SiO2-poor igneous rocks, in metamorphic and metasomatic rocks, and in sedimentary rocks. Nepheline and kalsilite may also be the reservoir for alkalies in the deep mantle. Melilite, nepheline and sodalite have been reported in meteorite inclusions.

The paragenesis of each feldspathoid is reviewed, concentrating on some of the more controversial problems involving feldspathoids in igneous rocks. These include the importance of melilites in basaltic rock genesis, leucite-analcite transformations and the question of primary magmatic analcite, and feldspathoid feldspar geothermometers. Feldspathoid paragenesis is reviewed in the light of associations, geochemistry and experimental petrology. parable to those of the mantle indicate that a number of feldspathoids can, in theory at least, exist in the mantle. Some melilites along the akermanite (Ca2MgSi2O7) — soda melilite (CaNaAlSi2O7) join are certainly stable in the upper mantle (Fig. 12). The limits of gehlenite stability are not known. Nepheline in the presence of only small amounts of SiO2 is stable to at least 40 kb (Bell and Roseboom, 1969). In the presence of greater amounts of SiO2 its stability is limited by the albite + nepheline → liquid and nepheline + albite → jadeite reactions with a maximum stability of about 24 kb at 1250°C (Bell and Roseboom, 1969).

Of the K-rich feldspathoids, leucite is stable to > 30 kb where it breaks down to sanidine and kalsilite (Ringwood et al., 1967). Unlike sanidine, which transforms to a high pressure hollandite structure at 120 kb, these authors detected no transition in kalsilite to give a high pressure structure at pressures up to 120 kb. More recently, Wendlandt and Eggler (1980c) have argued that in realistic mantle compositions with olivine and in the absence of phlogopite, kalsilite is a more likely K-Al-silicate in the upper mantle than sanidine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APPLEYARD, E.C. (1980).-Mass balance computations in metasomatism: metagabbro/nepheline pegmatite interaction in northern Norway. Contrib. Miner. Petrol.,73, 131–144.

    Google Scholar 

  2. ARIMA, M. and EDGAR, A.D. (1980). -Importance of time and H20 contents on the analcime-H2O system at 465°C and 1 kb PH2O• N. Jb. Miner. Mh., 14, 543–554.

    Google Scholar 

  3. ARMSTRONG, J.T., MEEKER, G.P., HUNEKE, J.C. and WASSERBURG, G.J. (1982).-The Blue Angel: I. The mineralogy and petrogenesis of a hibonite inclusion from the Murchison meteorite. Geochim. Cosmochim.Acta, 46, 575–595.

    Google Scholar 

  4. ARRHENIUS, G. (1978).-Chemical aspects of the formation of the solar system. in “The Origin of the Solar System”, S.F. DERMOTT, ed. Wiley, 521–581.

    Google Scholar 

  5. BAILEY, D.K. and SCHAIRER, J.F. (1966).-The system Na20-Al2O3-Fe2O3-SiO2 at one atmosphere, and the petrogenesis of alkaline rocks. J. Petrol., 7, 114–170.

    Google Scholar 

  6. BALDRIDGE, W.S., CARMICHAEL, I.S.E. and ALBEE, A.L. (1981).-Crystallization paths of leucite bearing lavas: examples from Italy. Contrib. Miner. Petrol., 76, 321–325.

    Google Scholar 

  7. BARBIERI, M., DOLFI, D., and TREGILA, R. (1977).-Sulla genesi delle vulcaniti di Crowsnest alla luce del comporiamento geochimico del rubidio nelle blairmorite e duranti il processo di analcimizzazione della leucite fino a PH2O-3 kbar. Rend. Soc. Italiana Min. Petr., 33, 5–62.

    Google Scholar 

  8. BARBIERI, F., FORNASERI, M. and PENTA, A. (1968).-Rubidium and potassium relationship in some volcanoes of central Italy. Chem. Geol., 3, 189–197.

    Google Scholar 

  9. BARKER, D.S. (1976).-Phase relations in the system NaAlSiO4-SiO2-NaCl-H2O at 400–800 C and 1 kilobar, and petrologic implications. J. Geol., 84, 77–106.

    Article  Google Scholar 

  10. BARTON, M. (1979).-A comparative study of some minerals occurring in the potassium rich alkaline rocks of the Leucite Hills, Wyoming, the Vico Volcano, Western Italy and the Toro-Ankole region, Uganda. N. Jb. Miner. Abh., 137, 113–134.

    Google Scholar 

  11. BARTON, M. and HAMILTON, D.L. (1982).-Water-saturated melting experiments bearing upon the origin of potassium rich magmas. Mineral. Mag., 45, 267–278.

    Google Scholar 

  12. BELL, P.M. and ROSEBOOM, E.H. (1969).-Melting relationships of jadeite and albite to 45 kilobars with comments on the melting behaviour of binary systems at high pressures. in “Pyroxenes and Amphiboles: Crystal Chemistry and Phase Petrology”, J.J. PAPIKE, ed. Mineral Soc. Am. Spec. Paper, 2, 151–161.

    Google Scholar 

  13. BLANDER, M. and FUCHS, L.H. (1975).-Calcium aluminum-rich inclusions in the Allende meteorite: evidence for a liquid origin. Geochim. Cosmochim. Acta, 39, 1605–1619.

    Google Scholar 

  14. BROOKS, C.K., FAWCETT, J.J., GITTINS, J. and RUCKLIDGE, J.C. (1981).-The Batbjerg complex, east Greenland: a unique ultrapotassic Caledonian intrusion. Can. J. Earth Sci., 18, 274–285.

    Google Scholar 

  15. BROWN, F.H. (1970).-Zoning in some volcanic nephelines. Am. Mineral., 55, 1670–1680.

    Google Scholar 

  16. CARMICHAEL, I.S.E., TURNER, F.J. and VERHOOGEN, J. (1974).-“Igneous Petrology”. McGraw-Hill, 739 p.

    Google Scholar 

  17. CHURCH, B.N. (1978).-Shackanite and related analcite bearing lavas from British Columbia. Can. J. Earth Sci., 15, 1669–1672.

    Google Scholar 

  18. CUNDARI, A. (1975).-Mineral chemistry and petrogenetic aspects of the Vico lavas, Roman volcanic region, Italy. Contr. Miner. Petrol., 53, 119–144.

    Google Scholar 

  19. DUKE, N.A. and EDGAR, A.D. (1977).-Petrology of the Blue Mountain and Bigwood felsic alkaline complexes of the Grenville province of Ontario. Can J. Earth Sci., 14, 515–538.

    Google Scholar 

  20. EDGAR, A.D. (1978).-Subsolidus phase relations in the system NaAlSi2O6-KAlSi2O6 at 1 kb PH O and their bearing on the origin of pseudoleucites and 2analcime in igneous rocks. N. Jb. Miner. Mg., H5, 210–222.

    Google Scholar 

  21. EDGAR, A.D. (1979a).-Shackanite and related analcite-bearing lavas in British Columbia: Discussion. Can. J. Earth Sci., 16, 1298–1299.

    Google Scholar 

  22. EDGAR, A.D. (1979b).-Mineral chemistry and petrogenesis of an ultrapotassic-ultramafic volcanic rock. Contr. Miner. Petrol., 71, 171–175.

    Google Scholar 

  23. EDGAR, A.D. and ARIMA, M. (1981).-Geochemistry of three potassium rich ultrabasic lavas from the west branch of the African Rift: inferences on their genesis. N. Jb. Miner. Mh., Hl2

    Google Scholar 

  24. –552.

    Google Scholar 

  25. EL-GORESY, A. and YODER, H.S. (1974).-Natural and synthetic melilite compositions. Carn. Inst. Wash. Yr. Bk., 73, 359–371.

    Google Scholar 

  26. FERGUSON, A.K. and CUNDARI, A. (1975).-Petrological aspect and evolution of the leucite bearing lavas from Bufambira, South West Uganda. Contr. Miner. Petrol., 50, 25–26.

    Google Scholar 

  27. FERGUSON, L.J. and EDGAR, A.D. (1978).-The petrogenesis and origin of the analcime in the volcanic rocks of the Crowsnest Formation, Alberta. Can. J. Earth Sci., 15, 69–77. FLOOR, P. (1974).-Alkaline gneisses. in “The Alkaline Rocks”, H. SORENSEN, ed., Wiley, 124–144.

    Google Scholar 

  28. FUDALI, R.F. (1963).-Experimental studies bearing on the origin of pseudoleucite and associated problems of alkalic rock genesis. Geol. Soc. Am. Bull., 74, 1101–1126.

    Google Scholar 

  29. GELLATLY, D.C. and HORNUNG, G. (1968).-Metasomatic nepheline bearing gneisses from Darknaile, Somali Republic. J. Geol., 76, 678–691.

    Google Scholar 

  30. GITTINS, J. (1979).-The feldspathoidal alkaline rocks. in “The Evolution of the Igneous Rocks: 50th Anniversary Perspectives”, H.S. YODER, ed., Princeton Univ. Press, 351–390.

    Google Scholar 

  31. GITTINS, J., FAWCETT, J.J., BROOKS, C.K. and RUCKLIDGE, J.C. (1980).-Intergrowths of nepheline-potassium feldspar and kalsilite-potassium feldspar: A reexamination of the pseudoleucite problem. Contr. Miner. Petrol., 73, 119–126.

    Google Scholar 

  32. GROSSMAN, L. (1980).-Refractory inclusions in the Allende meteorite. Ann. Rev. Earth Planet. Sci., 8, 559–608.

    Google Scholar 

  33. GUMMER, W.K. and BURR, S.V. (1946).-Nephelinized paragneisses in the Bancroft area, Ontario. J. Geol., 54, 137–168.

    Google Scholar 

  34. GUPTA, A.K. and EDGAR, A.D. (1975).-Leucite-Na-feldspar incompatibility: an experimental study. Miner. Mag., 40, 377–384.

    Google Scholar 

  35. GUPTA, A.K. and FYFE, W.S. (1975).-Leucite survival: the alteration to analcime. Can. Miner., 13, 361–363.

    Google Scholar 

  36. HAMILTON, D.L. (1961).-Nephelines as crystallization temperature indicators. J. Geol., 69, 321–329.

    Google Scholar 

  37. HAMILTON, D.L. and MacKENZIE, W.S. (1960).-Nepheline solid solutions in the system NaAlSiO4-KAlSiO4-SiO2 . J. Petrol., 1, 56–72. HENDERSON, C.M.B. and GIBB, F. F. (1972).-Plagioclase-Ca rich nepheline intergrowths in a syenite from the Marangudzi complex, Rhodesia. Miner. Mag., 38, 670–677.

    Google Scholar 

  38. KKOLM, P.M. (1982).-Mineral chemistry of perpotassic lavas of the Vulsinian district, the Roman Province, Italy. Mineral. Mag., 46, 379–387.

    Google Scholar 

  39. KUEHNER, S.M., EDGAR, A.D. and ARIMA, M. (1981).-Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. Am: Miner., 66, 663–677.

    Google Scholar 

  40. LARSEN, L.M. (1979).-Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, as exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12, 303–315.

    Google Scholar 

  41. LESSING, P. and GRANT, C.M. (1971).-Haüüynite from Edwards, New

    Google Scholar 

  42. York. Am. Miner., 56, 1096–1100.

    Google Scholar 

  43. LOWELL, G.R. and VILLAS, R.N. (1983).-Petrology of nepheline syenite gneiss from Amazonian Brazil. Geol. J., 18, 53–75.

    Google Scholar 

  44. LUTH, W.C. (1967).-Studies in the system KAlSiO4-Mg2SiO4-Si02-H2O: 1. Inferred phase relations and petrologic applications. J. Petrol., 8, 372–416.

    Google Scholar 

  45. MacKENZIE, W.S., RICHARDSON, D.M. and WOOD, B.F. (1974).-Solid solution of SiO2 in leucite. Bull. Soc. Fr miner. crist., 97, 257–260.

    Google Scholar 

  46. MacPHERSON, G.J. and GROSSMAN, L. (1979).-Melted and non-melted coarse grained Ca, Al-rich inclusions in Allende. Meteoritics, 14, 479–480.

    Google Scholar 

  47. MASON, B. (1975).-The Allende meteorite: cosmochemistry’s Rosetta Stone? Acc. Chem. Res., 8, 217–224.

    Google Scholar 

  48. MILLER, T.P. (1972).-Potassium-rich alkaline intrusive rocks of western Alaska. Geol. Soc. Am. Bull., 83, 2111–2128.

    Google Scholar 

  49. MITCHELL, R.H. and PLATT, R.G. (1979a).-Nepheline-plagioclase intergrowths of metasomatic origin from the Caldwell complex, Ontario, Canada. Can. Miner., 17, 537–540.

    Google Scholar 

  50. MITCHELL, R.H. and PLATT, R.G. (1979b).-Nepheline bearing rocks from the Poobah Lake Complex, Ontario: melignites and malignites. Contr. Miner. Petrol., 69, 255–264.

    Google Scholar 

  51. NAGASSAWA, H., BLANCHARD, D.P., SHIMIZU, H. and MASUDA, A. (1982).-Trace element concentrations in the isotopically unique Allende inclusion, EK-1–4–1. Geochim. Cosmochim. Acta, 46, 1669–1673.

    Google Scholar 

  52. ONUMA, K., IWAI, T. and YAGI, K. (1972).-Nepheline-“iron nepheline” solid solutions. J. Fac. Sci. Hokkaido Univ., Series 4, 15, 179–180.

    Google Scholar 

  53. ONUMA, K. and YOSHIKAWA, K. (1972).-Nepheline solid solutions in the system Na2O-Fe2O3-A12O3-SiO2. J. Japan Assoc. Min. Pet. Econ. Geol., 67, 395–401.

    Google Scholar 

  54. PEARCE, T.H. (1970).-The analcite-bearing rocks of the Crowsnest Formation, Alberta. Can. J. Earth Sci., 7, 46–66.

    Google Scholar 

  55. PERCHUK, L.L. and RYABCHIKOV, I.D. (1968).-Mineral equilibria in the system nepheline-alkali feldspar-plagioclase and their petrological significance. J. Petrol., 9, 123–167.

    Article  Google Scholar 

  56. POWELL, M. (1978).-The crystallization history of the Igdlerfigssalik nepheline syenite intrusion, Greenland. Lithos, 11, 99–120.

    Google Scholar 

  57. POWELL, M. and POWELL, R. (1977).-A nepheline-alkali feldspar geothermometer. Contr. Miner. Petrol., 62, 193–204.

    Google Scholar 

  58. RAO, Y. and MURTHY, I.S.N. (1974).-Nepheline as a metasomatic product. Am. Miner., 59, 690–693.

    Google Scholar 

  59. REEVE, E.J. and ANDERSON, G.M. (1976).-The Goulding Keene nephe-line pegmatite near Bancroft, Ontario. Can. J. Earth Sci., 13, 237–248.

    Google Scholar 

  60. RINGWOOD, A.E., REID, A.F. and WADSLEY, A.D. (1967).-High pressure KAlSi3O8, an aluminosilicate with six fold coordination. Acta Crystal., 23, 1093-

    Google Scholar 

  61. ROUX, J. (1974).-Etude des solutions solids des néphélines

    Google Scholar 

  62. (Na,K)AlSiO4 et (Na,Rb)AlSiO4. Geochim. Cosmochim. Acta, 38, 1213–1224.

    Google Scholar 

  63. ROUX, J. and HAMILTON, D.L. (1976).-Primary igneous analcite - an experimental study. J. Petrol., 17, 244–257.

    Google Scholar 

  64. ROUX, J. and MacKENZIE, W.S. (1978).-Sodium in leucite and its petrogenetic significance: an experimental study. Bull. Miner., 10, 478–484.

    Google Scholar 

  65. SAHAMA, Th. G. (1953).-Parallel growth of nepheline and microperthitic kalsilite from North Kivu, Belgian Congo. Ann. Acad. Scient.Fennica, Series A 36, 1–18. SAHAMA, Th. G. (1962).-Petrology of Mt. Nyiragongo: a review. Trans. Edinburgh Geol. Soc., 19, 1–28. SAHAMA, Th. G. (1976).-Composition of clinopyroxene and melilite in the Nyiragongo rocks. Carn. Inst. Wash. Yr. Bk., 75, 585–591.

    Google Scholar 

  66. STORMER, J.C. and CARMICHAEL, I.S.E. (1971).-The free energy of sodalite and the behaviour of chloride, fluoride and sulphate in silicate magmas. Am. Miner., 56, 292–306.

    Google Scholar 

  67. SYLVESTER, G.C. and ANDERSON, G.M. (1976).-The Davis nepheline pegmatite and associated nepheline gneisses near Bancroft, Ontario. Can. J. Earth Sci., 13, 249–265.

    Google Scholar 

  68. TAYLOR, D. (1967).-The sodalite group of minerals. Contr. Miner. Petrol., 16, 172–188.

    Google Scholar 

  69. TAYLOR, D. and MacKENZIE, W.S. (1975).-A contribution to the pseudoleucite problem. Contr. Miner. Petrol., 49, 321–333.

    Google Scholar 

  70. VALENCA, J.G. and EDGAR, A.D. (1979).-Pseudoleucites from Rio de Janeiro State, Brazil. Am. Miner., 64, 733–735.

    Google Scholar 

  71. VELDE, D. and YODER, H.S. (1976).-The chemical composition of melilite bearing eruptive rocks. Carn. Inst. Wash. Yr. Bk., 75, 574–580.

    Google Scholar 

  72. VELDE, D. and YODER, H.S. (1978).-Nepheline solid solutions in melilitebearing eruptive rocks and olivine nephelinites. Carn. Inst. Wash. Yr. Bk., 77, 761–767.

    Google Scholar 

  73. WELLMAN, T.R. (1970).-The stability of sodalite in a synthetic syenite plus aqueous chloride fluid system. J. Petrol., 11, 49–71.

    Article  Google Scholar 

  74. WENDLANDT, R.F. and EGGLER, D.H. (1980a).-The origins of potassic magmas. 1. Melting relations in the systems KAlSiO4-Mg2SiO4-SiO2 and KAlSiO4-MgO-SiO2-0O2 to 30 kilobars. Am. J. Sci., 280, 385–420.

    Google Scholar 

  75. WENDLANDT, R.F. and EGGLER, D.H. (1980b).-The origins of potassic magmas. 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-0O2 at high pressures and temperatures. Am. J. Sci., 280, 421–458.

    Google Scholar 

  76. WENDLANDT, R.F. and EGGLER, D.H. (1980c).-Stability of sanidine + forsterite and its bearing on the genesis of potassic magmas and the distribution of potassium in the upper mantle. Earth Planet. Sci. Lett., 51, 215–220.

    Google Scholar 

  77. WILKINSON, J.F.G. (1977).-Analcime phenocrysts in a vitrophyric analcimite - primary or secondary? Contr. Miner. Petrol., 64, 1–10.

    Google Scholar 

  78. WOOLEY, A.B. and SYMES, R.F. (1976).-The analcime phyric phonolites (blairmorites) and associated analcime kenvtes of the Lupata Gorge, Mocambique. Lithos, 9, 9–15.

    Google Scholar 

  79. YODER, H.S. (1973).-Melilite stability and paragenesis. Fortschr. Miner., 50, 140–173.

    Google Scholar 

  80. YODER, H.S. (1975).-Relationship of mnelilite-bearing rocks to kimberlite: a preliminary report on the system akermanite-0O2. Phys. Chem. Earth, 9, 883–894.

    Google Scholar 

  81. YODER, H.S. (1979).-Melilite-bearing rocks and related lamprophyres. in “The Evolution of Igneous Rocks: 50th Anniversary Perspectives”, H.S. YODER, ed., Princeton University Press, 391–411.

    Google Scholar 

  82. ZYRYANOV, V.N. (1980).-The equilibration of sodalite in systems that illustrate conditions of mineral formation at T = 400–600°C, P = 1.108 Pa and T = 800–1100°C, P = 6.105 Pa. Miner. Zhurn., 2, 25–33 (in Russian).

    Google Scholar 

  83. ZYRYANOV, V.N., PERCHUK, L. and PODLESSKI, K.K. (1978) .-Nepheline- alkali feldspar equilibria: 1. Experimental data and thermodynamic calculations. J. Petrol., 19, 1–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edgar, A.D. (1984). Chemistry, Occurrence and Paragenesis of Feldspathoids: A Review. In: Brown, W.L. (eds) Feldspars and Feldspathoids. NATO ASI Series, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6929-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6929-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6931-6

  • Online ISBN: 978-94-015-6929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics