Skip to main content

Feldspathoid Stabilities and Phase Inversions — A Review

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 137))

Abstract

The SiO2-undersaturated part of the system NaAlSiO4-KAlSiO4-SiO2± H2O is used to discuss the liquidus stability relations of nepheline, kalsilite and leucite at 1 atm and elevated \( P_{H_2 O} \) · Analcime coexists with silicate liquid (primary analcime) at \( P_{H_2 O} \) > 5 kbars for Na2O-rich undersaturated compositions in the residua system. The coprecipitation or resorption nature of leucite on the leucite-feldspar field boundary is discussed as a function of bulk composition, \( P_{H_2 O} \) and for both equilibrium and fractional crystallization. The presence of certain other components markedly changes the stability conditions for nepheline in the residua system. Thus at 1 kbar the presence of an aqueous fluid containing as little as 0.01 mole fraction of chloride may stabilise primary sodalite . It seems likely that cancrinite should be stabilized as a primary liquidus phase at high enough CO2 fugacities in the presence of CaO.

The ‘flexibility’ of feldspathoid framework structures is reflected in the variety of chemical compounds (both natural minerals and synthetic phases) which have related structures and in the polymorphism shown by some of these. Displacive inversions exhibited by pure-Na nepheline (NaAlSiO4 ) and SiO2-rich natural and synthetic leucites are martensitic in character. Such inversions may be more common in framework silicates than hitherto imagined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arima, M. and Edgar, A.D. (1980) Importance of time and O contents on the analcime-HO system at 465C and 1 kbar. N.J. Min. Mh. 543–554.

    Google Scholar 

  2. Barker, D.S. (1976) Phase relations in the system NaAlSiO4-SiO2-NaCl-H2Oat 400°-800°C and 1 kilobar, and petrologic implications. J. Geol. 84, 97–106.

    Article  Google Scholar 

  3. Binsted, N. (1981) The system Ab-Ne-NaCl-H2O. Progress in Expt. Petr., NERC 5, 34–36.

    Google Scholar 

  4. Bowwen, N.L. (1928) Evolution of Igneous Rocks.

    Google Scholar 

  5. Bowen, N. L. (1937) Recent high-temperature research on silicates and its significance in igneous geology. Am. J. Sci. 33, 1–21.

    Google Scholar 

  6. Cohen, L.H. and Klement, W. (1976) Effect of pressure on reversible solid-solid transitions in nepheline and carnegieite. Min. Mag. 40, 487–492.

    Google Scholar 

  7. Cook, L. P. , Roth, R. S. , Parker, H.S. and Negas, T. (1977) The system K2O Al2O3-SiO2. Part 1. Phases on the KAlSiO4-KAlO2 join. Am. Min. 62, 1180–1190.

    Google Scholar 

  8. Edgar, A.D. (1963) Phase equilibrium studies in the system Di Ne Ab-H2O, with studies on the crystal chemistry of nephelines. Ph.D. thesis, Univ. of Manchester.

    Google Scholar 

  9. Edgar, A.D. (1964) Phase equilibrium relations in the system Di-Ne Ab-H2O at 1000 kg/cm2 water vapour pressure. Am. Min. 49, 573–585.

    Google Scholar 

  10. Edgar, A.D. (1964) Studies on cancrinites: II - Stability fields and cell dimensions of calcium and potassium-rich cancrinites. Canad. Min. 8, 53–67.

    Google Scholar 

  11. Edgar, A.D. (1978) Subsolidus phase relations in the system NaAlSi2O6-KAlSi2O6 at 1 kb PH2O and their bearing on the origin of pseudoleucites and analcime in igneous rocks. N. Jb. Min. Mh. 210–222

    Google Scholar 

  12. Ferry, J.M. and Blencoe, J.G. (1978) Subsolidus phase relations in the nepheline-kalsilite system at 0.5, 2.0 and 5.0 kbar. Am. Min. 63, 1225–1240.

    Google Scholar 

  13. Fudali, R.F. (1963) Experimental studies bearing on the origin of pseudoleucite and associated problems of alkali rock systems. Geol. Soc. Amer. Bull. 74, 1101–1126.

    Google Scholar 

  14. Goranson, R.W. (1938) Silicate-water systems: Phase equilibria in the NaAlSi3O8-H2O and KAlSi3O8-H2O systems at high temperatures and pressures. Am. J. Sci. 35A, 71–91.

    Google Scholar 

  15. Gupta, A.K. and Edgar, A.D. (1975) Leucite-Na-feldspar incompatibility: an experimental study. Min. Mag. 40, 377–384.

    Google Scholar 

  16. Hamilton, D. L. and MacKenzie, W.S. (1965) Phase equilibrium in the system NaAlSiO4-KAlSiO4-Sio2-H2O. Min. Mag. 34, 214–231.

    Google Scholar 

  17. Hazen, R.M. and Finger, L.W. (1979) Polyhedral tilting: a common type of pure displacive phase transition and its relationship to analcite at high pressure. Phase Transitions 1, 1–22.

    Article  Google Scholar 

  18. Henderson, C.M.B. and Roux, J. (1977) Inversions in sub-potassic nephelines. Contr. Min. Petr. 61, 279–298.

    Google Scholar 

  19. Henderson, C.M.B. and Taylor, D. (1982) The structural behaviour of the nepheline family: (1) Sr and Ba aluminates (MAl2o4). Min. Mag. 45, 111–127.

    Google Scholar 

  20. Henderson, C.M.B. and Thompson, A.B. (1980) The low-temperature inversion in sub-potassic nephelines. Am. Min. 65, 970–980.

    Google Scholar 

  21. Henderson, C.M.B. (1981) The tetragonal-cubic inversion in leucite solid solutions. Progr. Expt. Petr., NERC 5, 50–54.

    Google Scholar 

  22. Kim, K-T. and Burley, B. J. (1971) Phase equilibria in the system NaAlSi3O8 NaAlSiO4–H2O with special emphasis on the stability of analcite. Can. J. Earth Sci. 8, 311–337.

    Google Scholar 

  23. MacKenzie, W.S. and Rahman, S. (1968) The paragenesis leucite-Na feldspar. Contrib. Min. Petr. 19, 339–342.

    Google Scholar 

  24. Lindsley, D.H. (1967) P-T projection for part of the system kalsilitesilica. Carneg. Inst. Wash. Yb. 65, 244–247.

    Google Scholar 

  25. Lippin, B.R. (1982) The correct use of tangents in ternary systems containing solid solutions. Am. J. Sci. 282, 181–192.

    Google Scholar 

  26. MacKenzie, W.S., Richardson, D. and Wood, B.J. (1974) Solid solution of SiO2 in leucite. Bull. Soc. fr. Min. Cryst.97, 244–247.

    Google Scholar 

  27. Martin, R.F. and Lagache, M. (1975). Cell edges and infrared spectra of synthetic leucites and pollucites in the system KAlSi2O6-RbAlSi2O6-CsAlSi2O6. Canad. Min. 13, 275–281. Morse, S.A. (1969) Syenites. Geophys. Lab. Yrbook 67, 112–120.

    Google Scholar 

  28. Morse, S.A. (1980) Basalts and phase diagrams. Springer-Verlag.

    Google Scholar 

  29. Norris, G. and MacKenzie, W.S. (1976) Phase relations in the system NaAlSiO4-KAlSiO4-CaAl2Si2O8-SiO2 at PH2O= 1 kb. Progr. Expt. Petr., NERC 3, 79–81.

    Google Scholar 

  30. Orville, P.M. (1963) Alkali ion exchange between vapor and feldspar phases. Am. J. Sci. 261, 201–237.

    Google Scholar 

  31. Pankratz, L.B. (1968) High-temperature heat contents and entropies of dehydrated analcite, kaliophilite and leucite. Rept. Invest. U.S. Bur. Min. 7073.

    Google Scholar 

  32. Peacor, D.R. (1968) A high-temperature single crystal diffractometer study of leucite, (K,Na)AlSi2O6. Zeit. Krist. 127, 213–224.

    Google Scholar 

  33. Peters, Tj., Luth, W.C. and Tuttle, O.F. (1966) The melting of analcite solid solutions in the system NaAlSiO4-NaAlSi3O8–H2O. Am. Min. 51, 736–753.

    Google Scholar 

  34. Roux, J. (1974) Etude des solutions solides des nephelines (Na,K)-AlSiO4 et (Na,Rb)AlSiO4. Geochim. Cosmochim. Acta, 38, 1213–1224.

    Google Scholar 

  35. Roux, J. and Hamilton, D. L. (1976) Primary igneous analcite - an experimental study. J. Petr. 17, 244–257.

    Article  Google Scholar 

  36. Roux, J. and MacKenzie, W.S. (1978) Sodium in leucite and its petrogenetic significance: an experimental study. Bull. Min. 101, 478–484.

    Google Scholar 

  37. Scarfe, C. M. , Luth, W.C. and Tuttle, O. F. (1966) An experimental study bearing on the absence of leucite in plutonic rocks. Am. Min. 51, 726–735.

    Google Scholar 

  38. Schairer, J.F. (1950) The alkali feldspar join in the system NaAlSiO4-KAlSiO4-SiO2. J. Geol. 58, 512–517. Schairer, J.F. (1957) Melting relations of the common rock-forming oxides. J. Amer. Ceram. Soc. 40, 215–235.

    Google Scholar 

  39. Schairer, J.F. and Bowen, N.L. (1935) Preliminary report on equilibrium relations between feldspathoids, alkali feldspars, and silica. Am. Geophys. Union, Trans. 325–328.

    Google Scholar 

  40. Smith, J.V. and Tuttle, O. F. (1957) The nepheline-kalsilite system: 1. X-ray data. Am. J. Sci. 255, 282–305.

    Google Scholar 

  41. Stormer, J.C. and Carmichael, I. S. E. (1971) The free energy of sodalite and the behaviour of chloride, fluoride and sulfate in silicate magmas. Am. Min. 56, 292–306.

    Google Scholar 

  42. Taylor, D. and Henderson, C.M.B. (1968) The thermal expansion of the leucite group of minerals. Am. Min. 53, 1476–1489.

    Google Scholar 

  43. Taylor, D. and MacKenzie, W.S. (1975) A contribution to the pseudoleucite problem. Contr. Min. Petr. 49, 321–333.

    Google Scholar 

  44. Tuttle, O. F. and Smith, J.V. (1958) The nepheline-kalsilite system II. Phase relations. Am. J. Sci. 256, 571–589.

    Google Scholar 

  45. Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3o8-KAlSi3O8-Sio2 H2o. Geol. Soc. Amer. Memoir 74, 153 pp.

    Google Scholar 

  46. Wellman, T.R. (1970) The stability of sodalite in a synthetic syenite plus aqueous chloride fluid system. J. Petr. 11, 49–71. Yund, R.A. , McCallister, R.H. and Savin, S.M. (1972) An experimental study of nepheline-kalsilite exsolution. J. Petr. 13, 255–272.

    Google Scholar 

  47. Zeng, R.S. and MacKenzie, W.S. (1984) Preliminary report on the system NaAlSiO4-KAlSiO4-SiO2-H2O at PH20 = 5 kbar. Bull. Min. in press.

    Google Scholar 

  48. Zyrianov, V.N., Perchuk, L.L. and Podlesskii, K.K. (1978) Nephelinealkali feldspar equilibria: I. Experimental data and thermodynamic calculations. J. Petr. 19, 1–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, C.M.B. (1984). Feldspathoid Stabilities and Phase Inversions — A Review. In: Brown, W.L. (eds) Feldspars and Feldspathoids. NATO ASI Series, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6929-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6929-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6931-6

  • Online ISBN: 978-94-015-6929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics