Skip to main content

Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences

  • Chapter
Cretaceous Resources, Events and Rhythms

Part of the book series: NATO ASI Series ((ASIC,volume 304))

Abstract

The Cretaceous is characterized by unusually widespread distribution of “black shales”-- sequences of variable lithology containing numerous beds with organic-carbon (OC) contents in excess of 1 percent by weight-- in both deep- and shallow-marine settings. General time envelopes of globally important organic-carbon burial during the Aptian-Albian, at the Cenomanian-Turonian boundary, and to a lesser extent in the Coniacian-Santonian, have been termed “Oceanic Anoxic Events (OAEs)”. The available stratigraphic and organic geochemical data and secular trends in the carbon isotopic composition of marine carbonates suggest that the timing of OC burial is broadly synchronous during these episodes and that the mass of OC buried during each is considerable. There may be other important episodes of more widespread OC burial, as yet poorly documented, such as the Valanginian- Hauterivian.

Despite the recent burgeoning of interest in the Cretaceous “black shale problem”, a host of very basic and important questions requires focused and intensive study. There is a pressing need for detailed biostratigraphic and chemostratigraphic zonation of “black-shale” sequences, for high-resolution sampling and analysis of organic and inorganic geochemical parameters, and for careful documentation of sedimentary structures in Cretaceous “black-shale” sequences from different paleoenvironments on a worldwide basis. These data are required to answer basic questions regarding the timing of OC burial events and the areal distribution of OC-rich strata (Are OAEs really globally synchronous? Are there shorter period episodes within longer time envelopes?) and their relation to tectonic, sea level and climatic events (episodes). In addition, such data will help to determine whether periods of organic matter enrichment indicate unusually high oceanic biological productivity (fertility), high rates of supply of terrestrial organic matter and consequent high carbon fluxes to sediments and/or enhanced preservation of organic matter under widespread oxygen-deficient deep-water masses as the result of very different rates of oceanic overturn and/or high nutrient concentrations.

There is a strong correspondence between organic matter burial and mineralization (e.g. phosphorites and stratiform iron and manganese ores as primary deposits and perhaps metal sulfide ores as secondary deposits), and an obvious link between the “black shales” and hydrocarbon occurrences. Globally widespread “black shale” deposition is not unique to the Cretaceous, having characterized parts of the Jurassic, Devonian and CambroOrdovician. However, the Cretaceous record offers a unique opportunity to develop a better understanding of the factors that led to such episodes of enhanced organic matter preservation in marine strata in the past, particularly during periods characterized by warm, more equable climate, maximum extent of shelf seas and pronounced volcanism.

The effort to elucidate this record will require collaboration of a broad spectrum of earth scientists, including sedimentologists, stratigraphers, paleontologists and geochemists. The efforts of Working Group 2 of the CRER-GSGP will also be coordinated closely with those of the other Working Groups because of the interconnections between tectonic events, climate (short-term cycles and longer-term trends) and sea level variations and resulting impacts on ocean-atmosphere chemistry, circulation, biotic evolution and productivity, and organic matter burial. A global perspective on Cretaceous black shale deposition should be developed. This will necessitate contributions from scientists in a number of countries towards development of a global data base of characteristics of Cretaceous black shales and an international program of drilling and coring of Cretaceous black shale sequences, which might involve other objectives of CRER as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy, S.K., B.J. Presley, and M. Ewing, 1976. Distribution of manganese, iron and other trace elements in a core from the northwest Atlantic, J. Sed. Petrol., 46, 813–818.

    Google Scholar 

  • Arthur, M.A., 1979. North Atlantic Cretaceous black shales: the record at Site 398 and a brief comparison with other occurrences. In: Sibuet, J.-C., Ryan, W.B.F., et al., Initial Reports of the Deep Sea Drilling Project, v. 47, part 2: Washington (U.S. Government Printing Office ), 719–751.

    Google Scholar 

  • Arthur, M.A., 1982. The carbon cycle controls on atmospheric CO2 and climate in the geologic past. In: W.H. Berger and J.C. Crowell (eds) Climate in Earth History. Nat. Acad. Press, Washington, D.C., 55–67.

    Google Scholar 

  • Arthur, M.A. and Premoli Silva, I., 1982. Development of widespread organic-carbon rich strata in the Mediterranean Tethys. In: S.O. Schlanger and M.B. Cita (eds.) Nature of Cretaceous Carbon-Rich Facies. Academic Press, London, 7–54.

    Google Scholar 

  • Arthur, M.A., and W.E. Dean, 1986. Cretaceous Paleoceanography. In: Decade of North American Geology, Western North Atlantic Basin Synthesis Volume, B.E. Tucholke and P.R. Vogt, eds., Geol. Soc. Amer., 617–630.

    Google Scholar 

  • Arthur, M.A., W.E. Dean, and Stow, D.A.V., 1984. Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediments in the deep sea. In: Stow, D.A.V., and Piper, D., eds., Fine-Grained sediments: Geol. Soc. Lond. Spec. Publ., 527–562.

    Google Scholar 

  • Arthur, M.A., W.E. Dean, and S.O. Schianger, 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, In: The carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Mon. 32, edited by E.T. Sundquist and W.S. Broecker, AGU, Washington, D.C., 504–530.

    Google Scholar 

  • Arthur, M.A., W.E. Dean, and L.M. Pratt, 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/ruronian boundary, Nature, 335, 714–717.

    Google Scholar 

  • Arthur, M.A. and S.O. Schlanger, 1979. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, Bull. Am. Assoc. Pet. Geol., 63, 870–885.

    Google Scholar 

  • Arthur, M.A., S.O. Schlanger and H.C. Jenkyns, 1987. The Cenomanian-Turonian oceanic anoxic event, II. Paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, edited by J. Brooks and A. Fleet, Geological Society of London, Spec. Pub. no. 26, 401–420.

    Google Scholar 

  • Bacon, M.P. and J.N. Rosholt, 1982. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise, Geochim. Cosmochim. Acta, 46, 651–666.

    Google Scholar 

  • Barron, E.J., 1985. Numerical climate modeling: an exploration frontier in petroleum source rock prediction, Am. Assoc. Petrol. Geol. Bull., 69, 448–456.

    Google Scholar 

  • Barron, E.J., 1987. Global Cretaceous paleogeography-International Geologic Correlation Program Project, 191. Paleogeog. Paleoclim. Paleoecol., 59, 207–214.

    Google Scholar 

  • Barron, E.J., M.A. Arthur, and E.G. Kauffman, 1985. Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate, Earth Planet. Sci. Lett., 72, 327–340.

    Google Scholar 

  • Belzille, N. and J. Lebel, 1986. Capture of arsenic by pyrite in near-shore marine sediments, Chem. Geol. 54, 279–281.

    Google Scholar 

  • Berner, R.A., 1984. Sedimentary pyrite formation: an update, Geochim Cosmochim. Acta, 48, 605–615.

    Google Scholar 

  • Berner, R.A. and R. Raiswell, 1983. Burial of organic carbon and pyrite sulphur in sediments over Phanerozoic time: a new theory, Geochim. Cosmochim. Acta, 47, 855862.

    Google Scholar 

  • Bertine, K.K. and E.D. Goldberg, 1977. History of heavy metal pollution in Southern California coastal zone - reprise, Environ. Sci. Tech., 11, 297–299.

    Google Scholar 

  • Bowen, H.J.M., 1979. Environmental chemistry of the elements, Academic Press, London, 333 pp.

    Google Scholar 

  • Boyle, E.A., F. Sclater and J.M. Edmond, 1976. The marine geochemistry of cadmium, Nature, 263, 42–44.

    Google Scholar 

  • Bralower, T.J., 1987. Valanginian to Aptian calcareous nannofossil stratigraphy and correlation with the Upper M-sequence Magnetic anomalies, Marine Micropaleontology, 11, 293–310.

    Google Scholar 

  • Bralower, T.J., 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of anoxia, Paleoceanography, 3, 275–316.

    Google Scholar 

  • Bralower, T.J. and H.R. Thierstein, 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans: Geology, 12, 614–618.

    Google Scholar 

  • Bralower, T.J. and H.R. Thierstein, 1987. Organic carbon and metal accumulation rates in Holocene and mid-Cretacous marine sediments: paleoceanographic significance. In: Brooks, J., and Fleet, A., eds., Marine Petroleum Source Rocks, Geol. Soc. London Spec. Publ., no. 26, 345–369.

    Google Scholar 

  • Brass, G.W., J.R. Southam and W.H. Peterson, 1982. Warm saline bottom water in the ancient ocean, Nature, 296, 620–623.

    Google Scholar 

  • Brassell, S.C., G. Eglinton, and V.J. Howell, 1987. Palaeoenvironmental assessment of marine organic-rich sediments using molecular organic geochemistry, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 79–98.

    Google Scholar 

  • Bréhéret, J.G., 1985a. Indices d’un événement anoxique étendu à la Téthys alpine, à l’Albien inférieur (événenement Paquier). C.R. Acad. Sci., Paris, sér. II, 300, 355–358.

    Google Scholar 

  • Bréhéret, J.G.,1985b. Sedimentologie et diagenese de la matiere organique contenu dans le niveau Paquier, couche repere de l’ Albien interieur vocontien, C.R. Acad. Sci. Paris, t. 301, no. 15, 1151–1156.

    Google Scholar 

  • Brèhèret, J.G., M. Caron, and M. Delamette, 1986. Niveaux riches en matière organique dans l’Albien vocontien; quelques caractères du palèonenvironment; essai d’interpretation gènètique. In: Les couches riches en matière organique et leurs conditions de dèpôt, Doc. B.R.G.M., 110, 141–191.

    Google Scholar 

  • Brèhèret, J.G., 1988. Episodes de sedimentation riche en matiere organique dans les marnes bleues d’âge aptien et albien de la partie pélagique du bassin vocontien, Bull. Soc. Geol. France, sér. 8, 4, 349–356.

    Google Scholar 

  • Broecker, W.S. and T.-H. Peng, 1982. Tracers in the sea, Eldigio Press, Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY, 690 pp.

    Google Scholar 

  • Brongersma-Sanders, M., K.M. Stephan, T.G. Kwee and M. De Bruin, 1980. Distribution of minor elements in cores from the southwest Africa shelf with notes on plankton and fish mortality, Mar. Geol. 37, 91–132.

    Google Scholar 

  • Bruland, K.W., K. Bertine, M. Koide and E.D. Goldberg, 1974. History of metal pollution in Southern California coastal zone, Environ. Sci. and Techn., 8, 425–432.

    Google Scholar 

  • Bruland, K.W., 1983. Trace elements in sea water. In: Chemical Oceanography, v. 8 (J.P. Riley and R. Chester, Eds.), Academic Press, London, 45, 176–198.

    Google Scholar 

  • Brumsack, H.J., 1980. Geochemistry of Cretaceous Black Shales from the Atlantic Ocean (DSDP Legs. 11, 14, 36, and 41): Chem Geol., 31, 1–25.

    Google Scholar 

  • Brumsack, H.J. 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 447–462.

    Google Scholar 

  • Brumsack, H.J. and J. Thurow, 1986. The geochemical facies of black shales from the Cenomanian/Turonian Boundary Event (CTBE), In: Biogeochemistry of black shales (E.T. Degens, P.A. Meyers and S.C. Brassell, Eds.)., SCOPE/UNEP Sonderband, Mitt. Geol.-Palaeont. Inst. Univ. Hamburg, 60, 247–265.

    Google Scholar 

  • Burtner, R.L. and M.A. Warner, 1984. Hydrocarbon generation in Lower Cretaceous Mowry and Skull Creek Shales of the Northern Rocky Mountain area, In: J. Woodward, F.F. Meissner and J.L. Clayton, eds., Hydrocarbon Source Rocks of the Greater Rocky Mountain Region, Rocky Mountain Assoc. of Geol., Denver, 449–468.

    Google Scholar 

  • Burwood, R., 1984. Carbonate source rocks for six million barrels of oil per day-Zagros Fold Belt, Southwestern Iran, In: J.C. Palacas (ed.) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. Amer. Assoc. Petrol. Geol. Studies in Geology, 18.

    Google Scholar 

  • Byers, C.W. and W. Larson, 1979. Paleoenvironments of Mowry shale (Lower Cretaceous), Western and Central Wyoming, Amer. Assoc. Pet. Geol. Bull., 63, 354–361.

    Google Scholar 

  • Calvert, S.E., 1976. The mineralogy and geochemistry of near-shore sediments, In: Chemical Oceanography, v. 6, J.P. Riley and R. Chester, Eds., Academic Press, London, 187–280.

    Google Scholar 

  • Calvert, S.E., 1983. Geochemistry of Pleistocene sapropels and associated sediments from the eastern Mediterranean, Oceanol. Acta, 6, 255–267.

    Google Scholar 

  • Calvert, S.E., 1987. Oceanographic controls on the accumulation of organic matter in marine sediments, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 137–151.

    Google Scholar 

  • Calvert, S.E. and N.B. Price, 1970. Minor metal contents of recent organic-rich sediments off southwest Africa, Nature, 227, 593–595.

    Google Scholar 

  • Cannon, W.F., and E.R. Force, 1983. Potential for high-grade shallow-marine manganese deposits in North America, in Unconventional Mineral Deposits, edited by W.C. Shanks III, Soc. Econ. Geol., Am. Inst. Mining, Met., and Pet. Eng., New York., 175–200.

    Google Scholar 

  • Caron, M., 1985. Cretaceous planktic foraminifera. In: Bolli H.M., J.B. Saunders, and K. Perch-Nielsen (eds.), Plankton Stratigraphy, Cambridge University Press, 17–86.

    Google Scholar 

  • Caron, M. and Homewood, P., 1983. Evolution of early planktic foraminifers Mar. Micropaleont., 7, 453–262.

    Google Scholar 

  • Chamberlin, T.C., 1906. On a possible reversal of deep-sea circulation and its influence on geologic climates, J. Geol., 14, 363–373.

    Google Scholar 

  • Chester, R. and J.H. Stoner, 1975. Trace elements in total particulate material from surface seawater, Nature 255, 50–51.

    Google Scholar 

  • Chester, R., A. Griffiths and J.H. Stoner, 1978. Minor metal content of surface seawater particulates and organic-rich shelf sediments, Nature, 275, 308–309.

    Google Scholar 

  • Claypool, G.E., W.T. Holser, I.R. Kaplan, H. Sakai, and I. Zak, 1980. The age curves of sulphur and oxygen isotopes in marine sulfate and their mutual interpretation, Chem. Geol., 28, 199–260.

    Google Scholar 

  • Cobler, R. and J. Dymond, 1980. Sediment trap experiment on the Galapagos spreading center, equatorial Pacific, Science, 209, 801–803.

    Google Scholar 

  • Coccioni, R., O. Nesci, M. Tramontana, F.-C. Wezel, and E. Moretti, 1987. Descrizione di un livello-guida “radiolaritico-bituminoso-ittiolitico” alla base delle Marne a Fuciodi nell’Appennino umbro-marchigiano, Boll. Soc. Geol. Ital., 106, 183–192.

    Google Scholar 

  • Colley, S., J. Thomson, T.R.S. Wilson and N.C. Higgs, 1984. Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic, Geochim. Cosmochim. Acta, 48, 1223–1235.

    Google Scholar 

  • Collier, R.W., 1984. Particulate and dissolved vanadium in the North Pacific Ocean, Nature, 309, 441–444.

    Google Scholar 

  • Collier, R.W. and J. Edmond, 1984. The trace element geochemistry of marine biogenic particulate matter, Prog. Oceanogr., 13, 113–199.

    Google Scholar 

  • Collier, R.W., 1985. Molybdenum in the northeast Pacific Ocean, Limnol. Oceanogr., 30, 1351–1354.

    Google Scholar 

  • Cotillon, P.H. and M. Rio, 1984. Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Project Sites 535 and 540 (Gulf of Mexico), 534 (Central Atlantic), and in the Vocontian Basin (France), In: Buffler, R.T., W. Schlager, et al., Init. Repts. DSDP, 77: Washington, U.S. Government Printing Office, 339–376.

    Google Scholar 

  • Dean, W.E. and M.A. Arthur, 1986. Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American basin, Site 603, DSDP Leg 93, In: J.E. vanHinte, S.W. Wise, Jr., et al., Init. Repts. DSDP, 93: Washington, U.S. Government Printing Office, 1093–1137.

    Google Scholar 

  • Dean, W.E. and M.A. Arthur, 1989. Iron-sulfur-carbon relationships in organic-carbonrich sequences I: Cretaceous Western Interior Seaway, Am J. Sci, in press.

    Google Scholar 

  • Dean, W.E., M.A. Arthur, and G.E. Claypool, 1986. Depletion of 13C in Cretaceous marine organic matter: source, diagenetic or environmental signal, Mar. Geol., 70, 119157.

    Google Scholar 

  • Dean, W.E., M.A. Arthur and D.A.V. Stow, 1984a. Origin and geochemistry of Cretaceous deep-sea black shales ands multicolored claystones, with emphasis on Deep Sea Drilling Project Site 530, Southern Angola Basin. In: W.W. Hay, J.-C. Sibuet et al., Initial Reports of the Deep Sea Drilling Project, 75: Washington, D.C. (U.S. Government Printing Office), 819–844.

    Google Scholar 

  • Dean, W.E., G.E. Claypool and J. Thiede, 1984b. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean, Org. Geochem., 7, 39–51.

    Google Scholar 

  • Dean, W.E. and J.V. Gardner, 1982. Origin and geochemistry of redox cycles of Jurassic to Eocene age, Cape Verde Basin (DSDP Site 367), continental margin of North-West Africa. In: Nature and origin of Cretaceous carbon-rich facies (S.O. Schlanger and M.B. Cita, Eds. ), Academic Press, 55–78.

    Google Scholar 

  • Dean, W.E. and N.L. Parduhn, 1984. Inorganic geochemistry of sediments and rocks recovered from the southern Angola Basin and adjacent Walvis Ridge, Sites 530 and 532, Deep Sea Drilling Project Leg 75. In: Init. Repts. of DSDP, v. LXXV ( W.W. Hay, J.C. Sibuet, et al., Eds.), U.S. Govt. Printing Office, 923–958.

    Google Scholar 

  • Dean, W.E., M. Leinen, and D.A.V. Stow, 1984c. Classification of deep sea fine-grained sediments. Jour. Sed. Petrol., 55, 250–256.

    Google Scholar 

  • De Boer, P., 1982. Cyclicity and the storage of organic matter in Middle Cretaceous pelagic sediments, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 456–473.

    Google Scholar 

  • De Boer, P., 1983. Aspects of middle Cretaceous pelagic sedimentation in northern Europe, Geologica Ultrajectina, 112 pp.

    Google Scholar 

  • De Boer, P., 1986. Changes in the organic carbon burial during the Early Cretaceous, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 321–331.

    Google Scholar 

  • Degens, E.T., K.-C. Emeis, B. Mycke, and M.G. Wiesner, 1986. Turbidites, the principal mechanism yielding black shales in the early deep Atlantic Ocean, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 361–376.

    Google Scholar 

  • Degens, E.T., P.A. Meyers and S.C. Brassell, eds., 1986. Biogeochemistry of Black Shales, SCOPE/UNEP, Mittel. Geol.-Paläontol. Inst. Univ. Hamburg, 60, 421pp.

    Google Scholar 

  • Demaison, G.J. and G.T., 1980. Anoxic environments and oil source bed genesis, Amer. Assoc. Petrol. Geol. Bull., 64, 1179–1209.

    Google Scholar 

  • Didyk, B.M., B.R.T. Simoneit, S.C. Brassell and G. Eglinton, 1978. Geochemical indicators of paleoenvironmental conditions of sedimentation, Nature, 272, 216–222.

    Google Scholar 

  • Dymond, J., K. Fischer, M. Clauson, R. Cobler, W. Gardner, M.J. Richardosn, W. Berger, A. Soutar and R. Dunbar, 1981. A sediment trap intercomparison study in the Santa Barbara Basin, Earth and Planetary Sci. Letters, 53, 409–418.

    Google Scholar 

  • Edwards, L.E., 1984. Insights on why graphic correlation ( Shaw’s method) works, J. Geol., 92, 583–597.

    Google Scholar 

  • Eicher, D.L. and R. Diner, 1985. Foraminifera as indicators of water mass in the Cretaceous Greenhorn Sea, Western Interior. In: L.M. Pratt, E.G. Kauffman and F.B. Zelt (eds.). Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes. SEPM, Field Trip Guidebook, 60–71.

    Google Scholar 

  • Einsele, G. and J. Wiedmann, 1982. Turonian black shales in the Moroccan coastal basins: First upwelling in the Atlantic Ocean? In: U. von Rad et al. (ed.), Geology of the Northwest African continental margin, Springer, Berlin-Heidelberg, 396–414.

    Google Scholar 

  • Eisler, R., 1981. Trace metal concentrations in marine organisms, Pergamon press, Oxford, 687 pp.

    Google Scholar 

  • Elder, W.P., 1987. The paleoecology of the Cenomanian-Turonian (Cretaceous) Stage boundary extinctions at Black Mesa, Arizona, Palaios, 2, 24–40.

    Google Scholar 

  • Emerson, S., 1985. Organic carbon preservation in marine sediments, In: The carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Mon. 32, edited by E.T. Sundquist and W.S. Broecker, AGU, Washington, D.C., 78–87.

    Google Scholar 

  • Espitalié, J., M. Madec, B. Tissot, J.J., Menning and P. Leplat, 1977. Source rock charactrerization method for petroleum exploration. Offshore Technology Conference, Houston, Paper 2935, 6 pp.

    Google Scholar 

  • Espitalié, J., G. Deroo, and F. Marquis, 1985. Rock Eval pyrolysis and its applications, Inst. Francais du Petrole, Direction de Recherche, No. 27299, 72 pp.

    Google Scholar 

  • Feely, R.A., G.J. Massoth and W.M. Landing, 1981. Major-and trace-element composition of suspended matter in the northeast Gulf of Alaska: relationships with major sources, Mar. Chem., 10, 431–453.

    Google Scholar 

  • Fischer, A.G., and M.A. Arthur, 1977. Secular variations in the pelagic realm, in Deep Water Carbonate Environments, Soc. Econ. Paleontol. Mineral. Spec. Pub. 25, edited by H.E. Cook and P. Enos, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 19–50.

    Google Scholar 

  • Regal, A.R. and C.C. Patterson, 1983. Vertical concentration profiles of lead in theCentral Pacific at 15°N and 20°S, Earth and Planet. Sci. Letters, 64, 19–32.

    Google Scholar 

  • Flegal, A.R. and C.C. Patterson, 1985. Thallium concentrations in seawater, Mar.Chem., 15, 327–331.

    Google Scholar 

  • Flexer, A., A. Rosenfeld, S. Lipson-Benita, and A. Honigstein, 1986. Relative sea level changes during the Cretaceous in Israel, Bull. Amer. Assoc. Petrol. Geol, 70, 16851699.

    Google Scholar 

  • Force, E.R., W.F. Cannon, R.A. Koski, K.T. Passmore, and B. R. Doe, 1983. Influences of oceanic anoxic events on manganese deposition and ophiolite-hosted sulfide preservation, in Paleoclimate and Mineral Deposits, U.S. Geol. Surv. Circ. 822, edited by R. M. Cronin, W.F. Cannon,. and R.Z. Poore, U.S. Geological Survey, Washington, D.C., 26–29.

    Google Scholar 

  • Fowler, S.W., 1977. Trace elements in zooplankton particulate products, Nature 269, 5153.

    Google Scholar 

  • Frakes, L.A., and B.R. Bolton, 1984. Origin of manganese giants: Sea-level change and anoxic-oxic history, Geology, 12, 83–86.

    Google Scholar 

  • Fries, G. and B. Beaudoin, 1986. Resèdimentation de sapropels dans l’Apto-Albien du Bassin du Sud-Est (France), In: Les couches riches en matière organique et leurs conditions de dèpôt. Doc. B.R.g.M., 110, 193–206.

    Google Scholar 

  • Frush, M.P. and D.L. Eicher, 1975. Cenomanian and Turonian Foraminifera and paleoenvironments in the Big Bend region of Texas and Mexico, In: W.G.E. Caldwell (ed.), The Cretaceous System in the Western Interior of North America, Geological Assoc., Canada, Spec. Paper 13, 276–301.

    Google Scholar 

  • Gaida, K.-H., R. Gedenk, E. Kemper, W. Michaelis, R. Scheuch, H.-H. Schmitz, and W. Zimmerle, 1981. Lithologische, mineralogische und organisch-geochemische Untersuchungen an Tonsteinen und Tonmergelsteinen der Unterkreide Nordwest deutschlands (unter besonderer Berücksichtigung der Schwarzschiefer), Geol. Jb., Reihe A, 58, 15–47.

    Google Scholar 

  • Garrets, R.M. and A. Lerman, 1981. Phanerozoic cycles of sedimentary carbon and sulphur, Proc. Natl. Acad. Sci. USA, 78, 4652–4656.

    Google Scholar 

  • Gaupp, R. and D.J. Batten, 1983. Depositional setting of Middle to Upper Cretaceous sediments in the Northern Calcareous Alps from palynological evidence, Neues Jb. Geol. Paläont., Mh., 1983, 585–600.

    Google Scholar 

  • Govinden, A., 1982. Imprint of global “Cretaceous Anoxic Events” in east coast basins of India and their implications, Bull. ONGC, 19, 256–270.

    Google Scholar 

  • Graciansky, P.C., de, E. Brosse, G. Deroo, J.-P. Herbin, L. Montadert, C. Müller, J. Sigal, and A. Schaaf, 1982. Les formations d’age Crétacé de l’Atlantique Nord et leur matiere organique: paleogeographie et milieux de depot, Revue de l’Institut Francais du Petrole, 37, 275–337.

    Google Scholar 

  • Graciansky, P.C. de, G. Demo et al., 1984. A stagnation event of ocean-wide extent in the upper Cretaceous, Nature, 308, 346–349.

    Google Scholar 

  • Graciansky, P.C. de, E. Brosse, G. Deroo, J.-P. Herbin, L. Montadert, C. Müller, J. Sigal, and A. Schaaf, 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 317–344.

    Google Scholar 

  • Habib, D., 1983. Sedimentation-rate-dependent distribution of organic matter in the North Atlantic Jurassic-Cretaceous, In: R.E. Sheridan, F.M. Gradstein et al., Init. Repts. of DSDP, 76, Washington, U.S. Government Printing Office, 781–794.

    Google Scholar 

  • Hallam, A., and M.J. Bradshaw, 1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions, J. Geol. Soc. London, 136, 157–164.

    Google Scholar 

  • Hallam, A., J.M. Hancock, J.L. LaBrecque, W. Lowrie and J.E.T. Channell, 1985, Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy, In: N.J. Snelling (ed.), The Chronology of the Geologic Record, Geol. Soc., Mem. 10, 118–170.

    Google Scholar 

  • Hallock, P. and W. Schlager, 1986. Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389–398.

    Google Scholar 

  • Hancock, J.M. and E.G. Kauffman, 1979. The great transgressions of the Late Cretaceous, Geol. Soc. London, 136, 175–186.

    Google Scholar 

  • Haq, B., J. Hardenbol, and P.R. Vail, 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present), Science, 235, 1156–1167.

    Google Scholar 

  • Harland, W.B., A.V. Cox, P.G. Llewellyn, C.A.G. Pickton, A.G. Smith, and R. Walters, 1982. A geologic time scale, Cambridge University Press, 131 pp.

    Google Scholar 

  • Hart, M.B. and P.J. Bigg, 1981. Anoxic events in the chalk seas of northwest Europe. In: J.W. Neale and M.D. Brasier (eds.), Microfossils from Recent and Fossil Seas. The British Micropalaeont. Soc., 177–185.

    Google Scholar 

  • Hay, W.W., 1972, Probabilistic Stratigraphy, Eclog. Geol. Helv., 65, 255–266.

    Google Scholar 

  • Heath, G.R., T.C. Moore, and J.P. Dauphin, 1977. Organic carbon in deep-sea sediments, In: N.R. Andersen and A. Malahoff, eds., Fate of Fossil Fuel CO2 in the Oceans, Plenum, N.Y., 605–628.

    Google Scholar 

  • Heinrichs, H., B. Schulz-Dobrick and K.W. Wedepohl, 1980. Terrestrial geochemistry of Cd, Bi, ‘n, Pb, Zn and Rb, Geochim. Cosmochim. Acta, 44, 1519–1533.

    Google Scholar 

  • Heinrichs, H., B. Wachtendorf, K.H. Wedepohl, B. Rössner and G. Schwedt, 1986. Hydrogeochemie der Quellen und kleineren Zuflüsse der Sösetalsperre ( Harz ), N.Jb. Miner. Abh., 156, 23–62.

    Google Scholar 

  • Herbert, T.D., R.F. Stallard and A.G. Fischer, 1986. Anoxic events, productivity rhythms, and the orbital signature in a mid-Cretaceous pelagic core, Paleoceanography, 1, 495–506.

    Google Scholar 

  • Herbin, J.P., E. Masure, and J. Roucaché, 1986. Cretaceous formations from the lower continental rise off Cape Hatteras: Organic geochemistry, dinoflagellate cysts, and the Cenomanian/Turonian boundary event at Sites 603 (Leg 93) and 105 (Leg 11), In: J.E. vanHinte, S.W. Wise, Jr., et al., Init. Repts. DSDP, 93: Washington, U.S. Government Printing Office, 1139–1162.

    Google Scholar 

  • Herbin, J.P., L. Montadert, C. Müller, R. Gomez, J. Thurow and J. Wiedmann, 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys, In: C.P. Summerhayes and N.J. Shackletion (eds.) North Atlantic Palaeoceanography, Geol. Soc. Spec. Publ., 21, 389–422.

    Google Scholar 

  • Herbin, J.P., C. Müller, P.C. de Graciansky, T. Jacquin, F. Magniez-Jannin, and P. Unternehr, 1987. Cretaceous anoxic events in the South Atlantic, Revista Brasileira de Geociencias, 17, 92–99.

    Google Scholar 

  • Hilbrecht, H., M.A. Arthur, and S.O. Schianger, 1986. The Cenomanian-Turonian boundary event: sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW Germany, In: O.H. Walliser (ed.), Global Bio-Events, Lecture Notes in Earth Science, Springer, Berlin-Heidelberg, 345–351.

    Google Scholar 

  • Hoffman, A., 1985. Patterns of family extinction depends on definition and geologic time scale, Nature, 315, 659–662.

    Google Scholar 

  • Holland, H.D., 1978. The chemistry of the atmosphere and oceans, Wiley and Sons, New York, 351 pp.

    Google Scholar 

  • House, M.R., 1985. Correlation of mid Paleozoic ammonoid evolutionary events with global sedimentary perterbations, Nature, 313, 17–22.

    Google Scholar 

  • Ibach-Johnson, L.E., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments, Am Assoc. Petrol. Geol. Bull., 66, 170188.

    Google Scholar 

  • Irving, E. North, F.K. and Couillard, R., 1974. Oil, climate and tectonics, Can. J. Earth Sci., 11, 1–15.

    Google Scholar 

  • Jacobs, L. and S. Emerson, 1982. Trace metal solubility in an anoxic basin, Earth and Planet. Sci. Letters, 60, 237–252.

    Google Scholar 

  • Jacobs, L., S. Emerson and J. Skei, 1985. Partitioning and transport of metals across the 02/H2S interface in a permanently anoxic fjord, Framvaren Fjord, Norway. Geochim. Cosmochim. Acta, 49, 1433–1444.

    Google Scholar 

  • Jacobs, L., S. Emerson and S.S. Huested, 1987. Trace metal geochemistry in the Cariaco Trench, Deep Sea Research, 34, 965–981.

    Google Scholar 

  • Jarvis, I., G.A. Carson, M.K.E. Cooper, M.B. Hart, P.N. Leary, B.A. Tocher, D. Horne and A. Rosenfeld, 1988. Microfossil assemblages and the Cenomanian-Turonian Oceanic Anoxic Event, Cret. Res., 9, 3–103.

    Google Scholar 

  • Jeandel, C., M. Caisso and J.F. Minster, 1987. Vanadium behavior in the global ocean and in the Mediterranean Sea, Mar. Chem., 21, 51–74.

    Google Scholar 

  • Jenkins, J.A. and D.F. Williams, 1983. Nile River water as a cause of eastern Mediterranean sapropel formation: evidence for and against, Mar. Micropaleontol., 8, 521–534.

    Google Scholar 

  • Jenkyns, H.C., 1980. Cretaceous anoxic events: From continents to oceans, J. Geol. Soc. London, 137, 171–188.

    Google Scholar 

  • Jenkyns, H.C., 1985. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts, Geol. Rundschau, 74, 505–518.

    Google Scholar 

  • Jenkyns, H.C., 1988. The Early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary and geochemical evidence, Am. J. Sci., 288, 101–151.

    Google Scholar 

  • Jenkyns, H.C., and J.C. Clayton, 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan lower Jurassic, Sedimentology, 33, 87–106.

    Google Scholar 

  • Jensen, T.F. and B. Buchardt, 1987. Sedimentology and geochemistry of the organic carbon-rich Lower Cretaceous Sola Formation (Barremian-Albian), Danish North Sea. In: Petroleum Geology of north west Europe, 1, ( Brooks, J. and Glennie, K.W., eds.), Graham and Trotman, London, 431–440.

    Google Scholar 

  • Jickells, T.D., W.G. Deuser and A.H. Knap, 1984. The sedimentation rates of trace elements in the Sargasso Sea measured by sediment trap, Deep Sea Research, 31, 1169 1178.

    Google Scholar 

  • Katz, B.J., 1983. Limitations of Rock-Eval pyrolysis for typing organic matter, Org. Geochem., 4, 195–199.

    Google Scholar 

  • Katz, B.J. and R.N. Pheifer, 1986. Organic geochemical characteristics of Atlantic ocean Cretaceous and Jurassic black shales, Marine Geology, 70, 43–66.

    Google Scholar 

  • Kauffman, E.G., 1984a. The fabric of Cretaceous marine extinctions, in, W.A. Berggren and J.A. van Couvering, eds., Catastrophies and Earth History: the new uniformitarianism, Princeton Univ. Press, 151–246.

    Google Scholar 

  • Kauffman, E.G., 1984b. Paleobiogeography and evolutionary response dynamics in the Cretaceous western interior seaway of North America, in G.E.G. Westermann, ed., Jurassic-Cretaceous Biochronology and Paleogeography of North America, Geol. Assoc. Canada Spec. paper 27, 273–306.

    Google Scholar 

  • Kauffman, E.G., 1988. Concepts and methods of high-resolution event stratigraphy, Ann. Rev. Earth Planet. Sci., 16, 605–654.

    Google Scholar 

  • Kemper, E. and W. Zimmerle, 1978. Die anoxischen Sedimente der präoberaptischen Unterkreide NW-Deutschlands und ihr paläogeographisches Rahmen. Geol. Jb., Reihe A, 45, 3–41.

    Google Scholar 

  • Krishnaswami, S., 1976. Authigenic transition elements in Pacific pelagic clays, Geochim. Cosmochim. Acta, 40, 425–434.

    Google Scholar 

  • Krishnaswami, S. and M.M. Sarin, 1976. Atlantic surface particulates: composition, settling rates and dissolution in the deep sea, Earth and Planet. Sci. Lett., 32, 430–440.

    Google Scholar 

  • Krumbein, W.C. and L.L. Sloss, 1963. Stratigraphy and Sedimentation, W.H. Freeman, San Francisco, 660 pp.

    Google Scholar 

  • Kuhnt, W., J. Thurow, J. Wiedmann, and J.P. Herbin, 1986. Oceanic anoxic conditions around the Cenomanian/Turonian boundary and the response of the biota. In: Biogeochemistry of Black Shales (Degens, E.T., Meyers, P.A. and Brassell, S.C., eds.), Mitt. Geol.-Paläont. Inst. Univ. Hamburg, 60, 205–246.

    Google Scholar 

  • Landing, W.M. and R.A. Feely, 1981. The chemistry and vertical flux of particles in the northeastern Gulf of Alaska, Deep Sea Research, 28, 19–37.

    Google Scholar 

  • Lange, J., 1974. Geochemische Untersuchungen an pelagischen Sedimenten des atlantischen und pazifischen Ozean (DSDP, Leg I-VII). PhD Thesis, University of Göttingen, FRG, 126 pp.

    Google Scholar 

  • Lange, J., K.H. Wedepohl, H. Heinrichs and E. Gohn, 1977. Notes about the specific chemical composition of “black shales” from Site 367 (Leg 41). In: Init. Repts. of the DSDP, v. XLI ( Y. Lancelot, E. Seibold, et al. Eds.), U.S. Govt. Print. Office, Washington, 875–877.

    Google Scholar 

  • Leckie, R.M., 1989. An oceanographic model for the early evolutionary history of planktonic foraminifera, Palaeogeog., Palaeoclim., Palaeoecol., in press.

    Google Scholar 

  • Leine, L., 1986. Geology of the Tarfaya oil shale deposit, Morocco, Geol. en Mijnbouw, 65, 57–74.

    Google Scholar 

  • Levanthal, J.S., 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition, Geochim. Cosmochim. Acta, 47, 133–137.

    Google Scholar 

  • Macellari, C.E. and T.J. DeVries, 1987. Late Cretaceous upwelling and anoxic sedimentation in northwestern South America, Palaeogeog., Palaeoclim., Palaeoecol., 59, 279–292.

    Google Scholar 

  • Mangini, A. and J. Dominik, 1979. Late Quaternary sapropel on the Mediterranean Ridge: U-budget and evidence for low sedimentation rates, Sed. Geol., 23, 113–125.

    Google Scholar 

  • Martin, J.H. and G.A. Knauer, 1973. The elemental composition of plankton, Geochim. Cosmochim. Acta, 37, 1639–1653.

    Google Scholar 

  • Martin, J.H., K.W. Bruland and W.W. Broenkow, 1976. Cadmium transport in the California current. In: Marine pollutant transfer (H.L. Windom and R.A. Duce, Eds. ), Lexington Books, 159–184.

    Google Scholar 

  • Martin, J.H., G.A. Knauer and R.M. Gordon, 1983. Silver distributions and fluxes in north-east Pacific waters, Nature, 305, 306–309.

    Google Scholar 

  • Martin, J.-M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Trace metals in sea water, (C.S. Wong et al., Eds), NATO Conference Series, Plenum Publishing Corp., New Yor, 265–296.

    Google Scholar 

  • Matsumoto, T., 1980. Inter-regional correlation of transgressions and regressions in the Cretacoeus period, Cretaceous Res., 1, 359–373.

    Google Scholar 

  • McCoy, F.W., and H.B. Zimmerman, 1977. A history of sediment lithofacies in the South Atlantic Ocean, In: K. Perch-Nielsen, P. Supko et al., Init. Repts. of the DSDP, 75, Washington, U.S. Government Printing Office, 1074–1079.

    Google Scholar 

  • McNeil and W. Caldwell, 1981. Cretaceous Rocks and Their Foraminifera in the Manitoba Escarpment, Geol. Assoc. Canada Special Paper No. 21,.

    Google Scholar 

  • Measures, C.I., B. Grant, M. Khadem, D.S. Lee and J.M. Edmond, 1984. Distribution of Be, Al, Se and Bi in the surface waters of the western North Atlantic and Caribbean, Earth and Planet. Sci. Letters, 71, 1–12.

    Google Scholar 

  • Meyers, P. A., S.C. Brassell, and A.Y. Huc, 1984. Geochemistry of organic carbon in South Atlantic sediments from DSDP Leg 75, in Hay, W.W., Sibuet, J.C. et al., Initial Reports of DSDP, Leg 75: Washington (U.S. Govt. Print. Off. ), 967–982.

    Google Scholar 

  • Meyers, P.A. and R.M. Mitterer,1986. Deep ocean black shales, organic geochemistry and paleoceanographic setting, Marine Geology, 70, 1–8.

    Google Scholar 

  • Moullade, M., 1966. Etude stratigraphique et micropaléontologique du Crétacé inférieur de la “Fosse Vocontienne”, Doc. Lab. Géol. Fac. Sci. Lyon, 15, 369 pp.

    Google Scholar 

  • Müller, P.J. and E. Suess, 1979. Productivity, sedimentation rate and sedimentary organic carbon content in the oceans-I. Organic carbon preservation, Deep-Sea Res., 26A, 1347–1362.

    Google Scholar 

  • Müller, C., A. Schaaf and J. Sigal, 1984. Biochronostratigraphie des formations d’age Crétacé dans les forages du DSDP dans l’ocean Atlantique Nord, Rev. Inst. Francais Pet., vol. 38, 39, 45 pp.

    Google Scholar 

  • Ng, A. and C.C. Patterson, 1982. Changes of lead and barium with time in California offshore basin sediments, Geochim. Cosmochim. Acta, 46, 2307–2321.

    Google Scholar 

  • North, F.K., 1980. Episodes of source-sediment deposition: The episodes in individual close-up, J. Petrol. Geology, 2–3, 323–338.

    Google Scholar 

  • Ozimic, S., 1982. The geology and petrophysics of the Toolebuc Formation and its laterally contiguous time equivalents, Eromanga and Carpenteria Basins, In: Eomanga Basin Symposium, Adelaide, South Australia, Petrol. Explor. Soc. Australia. Palmer, A.R., 1983. The DNAG time scale, Geology, 11, 182.

    Google Scholar 

  • Parrish, J.T. and R. L. Curtis, 1982. Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic eras, Palaeogeogr., Palaeoclim., Palaeoecol., 40, 67–101.

    Google Scholar 

  • Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils, In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (eds.), Plankton stratigraphy, Cambridge University Press, 329–426.

    Google Scholar 

  • Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis, Am. Assoc. Petrol. Geol. Bull., 70, 318–329.

    Google Scholar 

  • Pettijohn, F.J., 1957. Sedimentary Rocks, Harper and Row, New York, 718 pp.

    Google Scholar 

  • Pratt, L.M., 1984. Influence of paleoenvironmental factors on preservation of organic matter in the mid-Cretaceous Greenhorn formation, Pueblo, Colorado. Amer. Assoc. Petrol. Geol. Bull., 68, 1146–1159.

    Google Scholar 

  • Pratt, L.M. and C.N. Threlkeld, 1985. Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U.S.A.. In: The Mesozoic of middle North America. Can. Soc. Petrol. Geol., 9, 305–312.

    Google Scholar 

  • Pratt, L.M. and J.D. King, 1986. Variable marine productivity and high eolian input recorded by rhythmic black shales in mid-Cretaceous pelagic deposits from central Italy, Paleoceanography, 1, 507–522.

    Google Scholar 

  • Premuzic, E.T., C.M. Benkovitz, J.S. Gaffrey and J.J. Walsh, 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochem., 4, 63–77.

    Google Scholar 

  • Ramsden, A.R., 1983. Microscopic petrography of oil shales at Julia Creek, Northwestern Queensland, Journ. Geol. Soc. Australia, 30, 17–23.

    Google Scholar 

  • Ramsden, A.R., B.L. Dickson, and R.L. Meakins, 1982. Origin and significance of the Toolebuc gamma-ray anomaly in parts of the Eromanga Basin, Jour. Geol. Soc. Australia, 29, 285–296.

    Google Scholar 

  • Rau, G.H., M.A. Arthur, and W.E. Dean, 1987. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett., 82, 269–279.

    Google Scholar 

  • Raup, D.M. and J.J. Sepkoski, 1982. Mass extinctions in the marine fossil record. Science, 215, 1501–1503.

    Google Scholar 

  • Rossignol-Strick, M. W. Nesteroff, P. Olive, and C. Vergnaud-Grazzini, 1982. After the deluge: Mediterranean stagnation and sapropel formation, Nature, 295, 105–110.

    Google Scholar 

  • Roth, P.H., 1986. Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 299–320.

    Google Scholar 

  • Roth, P.H., 1987. Mesozoic calcareous nannofossil diversity: relation to paleoceanographic events, Paleoceanography, 2, 601–611.

    Google Scholar 

  • Roth, P.H. and H.R. Thierstein, 1972. Calcareous nannoplankton: Leg 14 of the Deep Sea Drilling Project. In: D.E. Hayes, A. C. Pimm et al, Init. Reports Deep Sea Drilling Project, 14. U.S. Government Printing Office, Washington, D.C., 421–485.

    Google Scholar 

  • Roth, P.H. and J. Bowdler, 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. In: J.E. Warme, R.G. Douglas and E.L. Winterer (eds.), The Deep Sea Drilling Project: a decade of progress, Soc. Econ. Paleontol. Mineral. Spec. Publ., 517–546.

    Google Scholar 

  • Roth, P.H. and K.R. Krumbach, 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: Implications for paleoceanography. Mar. Microplaeontology, 235–266.

    Google Scholar 

  • Ryan, W.B.F. and M.B. Cita, 1977. Ignorance concerning episodes of ocean-wide stagnation, Mar. Geol., 23, 197–215.

    Google Scholar 

  • Sarmiento, J.L., T.D. Herbert and J.R. Toggweiler, 1988. Causes of anoxia in the world ocean, Global Biogeochemical Cycles, 2, 115–128.

    Google Scholar 

  • Sarnthein, M., K. Winn, J.-C. Duplessy and M.R. Fontugne, 1988. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanography, 3, 36 1399.

    Google Scholar 

  • Savrda, C.E. and Bottjer, D.J., 1986. Trace-fossil model for reconstruction of paleooxygenation of bottom waters. Geology, 14, 3–6.

    Google Scholar 

  • Schlanger, S.O., 1986. High frequency sea-level fluctuations in Cretaceous time: an emerging geophysical problem. In K.J. Hsü (ed.) History of Mesozoic and Cenozoic Oceans. Amer. Geophys. Union Geodynam. Ser. 15, 61–74.

    Google Scholar 

  • Schianger, S.O., and H.C. Jenkyns, 1976. Cretaceous oceanic anoxic events: Causes and consequences, Geol. en Minj., 55, 179–184.

    Google Scholar 

  • Schianger, S.O., and M.B. Cita. 1982. Introduction, in Nature and Origin of Cretaceous Carbon-Rich Facies, edited by S.O. Schlanger and M.B. Cita, Academic Press, New York., 1–6.

    Google Scholar 

  • Schianger, S.O., M.A. Arthur, H.C. Jenkyns and P.A. Scholle, 1987. The CenomanianTuronian oceanic anoxic event, I. Stratigraphy and Distribution of organic carbon-rich beds and the marine a13 excursion, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 371–399.

    Google Scholar 

  • Scholle, P.A., and M.A. Arthur, 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, Am. Assoc. Pet. Geol. Bull., 64, 67–87.

    Google Scholar 

  • Schwarzacher, W. and A.G. Fischer, 1982. Limestone-shale bedding and perturbations of the earth’s orbit, In: G. Einsele and A. Seilacher (eds.), Cyclic and Event Stratification, Springer, Berlin-Heidelberg, 72–95.

    Google Scholar 

  • Sclater, F.R., E. Boyle and J.M. Edmond, 1976. On the marine geochemistry of nickel, Earth and Planet. Sci. Letters, 31, 119–128.

    Google Scholar 

  • Scotese, C.R. and C.P. Summerhayes, 1986. Computer model of paleoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte, 28–42.

    Google Scholar 

  • Shaw, A.B., 1964. Time in stratigraphy, McGraw Hill, Inc., New York, 365 pp.

    Google Scholar 

  • Sheridan, R.E., 1986. Pulsation tectonics as the control of North Atlantic paleoceanography, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 255–275.

    Google Scholar 

  • Shiller, A.M. and E. Boyle, 1985. Dissolved zinc in rivers, Nature, 317, 49–52.

    Google Scholar 

  • Sigal, J, 1977. Essai de zonation du Crétacé Méditerranéen à l’aide des foraminifères planktoniques, Geologie Méditerranée, 4, 99–108.

    Google Scholar 

  • Sissingh, W., 1977. Biostratigraphy of Cretaceous Calcareous Nannoplankton, Geol. Mijnbouw, 56., 37–65.

    Google Scholar 

  • Sliter, W.V., 1981. Albian foraminifers from the lower Cretaceous Christopher Formation of the Canadian Arctic Islands: Geological Survey of Canada Bulletin 300, 41–70.

    Google Scholar 

  • Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section, J. Foram. Res., 19, 1–19.

    Google Scholar 

  • Sliter, W.V., 1989. An early Aptian anoxic event in the Pacific Ocean, Geology, in press.

    Google Scholar 

  • Spencer, D.W., P.G. Brewer and P.L. Sachs, 1972. Aspects of the distribution and trace element composition of suspended matter in the Black Sea, Geochim. Cosmochim. Acta, 36, 71–86.

    Google Scholar 

  • Stanley, S.M. 1984. Temperature and biotic crises in the marine realm, Geology, 12, 205208.

    Google Scholar 

  • Statham, P.J., J.D. Burton and W.A. Maher, 1987. Dissolved arsenic in waters of the Cape Basin, Deep-Sea Res., 34, 1353–1359.

    Google Scholar 

  • Stein, R., 1986. Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deep-water environments of the Mesozoic Atlantic Ocean, In: Degens, E.T., P.A. Meyers and S.C. Brassell, eds., Biogeochemistry of Black Shales, SCOPE/UNEP, Mittel. Geol.-Paläontol. Inst. Univ. Hamburg, 60, 55–70.

    Google Scholar 

  • Stoeppler, M. and H.W. Nürnberg, 1979. Comparative studies on trace metal levels in marine biota, Ecotoxicology and Environmental Safety, 3, 335–351.

    Google Scholar 

  • Strom, K.M., 1936. Land-locked waters, Skifter Norsk. Viden-Akad, Oslo I, 1–84.

    Google Scholar 

  • Summerhayes, C.P., 1981. Organic facies of Middle Cretaceous black shales in deep North Atlantic: American Association of Petroleum Geologists Bulletin, 65, 2364–2380.

    Google Scholar 

  • Summerhayes, C.P., 1987. Organic-rich Cretaceous sediments from the Atlantic. In: Marine Petroleum Source Rocks (Brooks, J. and A.J. Fleet, eds.), Spec. Publ. Geol. Soc. London, 26, 301–316.

    Google Scholar 

  • Takayanagi, K. and G.T.G. Wong, 1985. Dissolved inorganic and organic selenium in the orca Basin, Geochim. Cosmochim. Acta, 49, p. 539.

    Google Scholar 

  • Tarduno, J.A., M. McWilliams, M.G. Debiche, W.V. Sliter, and M.C. Blake, Jr., 1985. Franciscan complex Calera limestones: accreted remants of Farallon Plate oceanic plateaus, Nature, 317, 345–347.

    Google Scholar 

  • Thiede, J. and T.H. van Andel, 1977. The paleoenvironment of anaerobic sediments in the late Mesozoic South Atlantic Ocean. Earth Planet. Sci. Lett., 33, 301–309.

    Google Scholar 

  • Thierstein, H.R., 1973. Lower Cretaceous Calcareous Nannofossil Biostratigraphy, Abh. Geol. Bund, 24, 52 pp.

    Google Scholar 

  • Thierstein, H.R., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments, Mar. Micropaleontology, 1, 325–362.

    Google Scholar 

  • Thierstein, H.R. 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments, in Talwani, M., Hay, W.W., and Ryan, W.B. F., eds., Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment: Washington, American Geophysical Union, Maurice Ewing Series, 3, 249–274.

    Google Scholar 

  • Thierstein, H.R., 1983. Trends and events in Mesozoic Oceans. In: CNC/SCOR Proceedings of the Joint Oceanographic Assembly, 1982, Canadian National Committee/Scientific Committee on Oceanic Research, 127–130.

    Google Scholar 

  • Thomson, J., M.S.N., Carpenter, S. Colley, T.R.S. Wilson, H. Elderfield and H. Kennedy, 1984. Metal accumulation rates in northwest Atlantic pelagic sediments, Geochim. Cosmochim. Acta, 48, 1935–1948.

    Google Scholar 

  • Tissot, B. 1979. Effects on prolific petroleum source rocks and major coal deposits caused by sea-level changes, Nature, 277, 463–465.

    Google Scholar 

  • Tissot, B.P. and D.H. Weite, 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, Springer-Verlag, Berlin. 2nd ed., 699 pp.

    Google Scholar 

  • Tissot, B., G. Deroo, and J.P. Herbin. 1979. Organic matter in Cretaceous sediments of the North Atlantic: contributions to sedimentology and paleogeography. In: Talwani, M., Hay, W. W., and Ryan, W.B.F., eds., Deep drilling in the Atlantic Ocean: continental margins and paleoenvironment: American Geophysical Union, Maurice Ewing Series, 3, 362–374.

    Google Scholar 

  • Tissot, B., G. Demaison, P. Masson, J.R. Delteil, and A. Combaz. 1980. Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins, Amer. Assoc. Petrol. Geol. Bull., 64, 2051–2063.

    Google Scholar 

  • Trask, P.D., 1932. Origin and environment of source sediments of petroleum, Gulf Publ. Co., Houston, 564 pp.

    Google Scholar 

  • Trefry, J.H. and B.J. Presley, 1976. Heavy metal transport from the Mississippi river to the Gulf of Mexico, In: Marine pollutant transfer (H.L. Windom and R.A. Duce, Eds. ), Lexington Books, 159–184.

    Google Scholar 

  • Tuchoke, B.E. and P.R. Vogt, 1979. Western North Atlantic: sedimentary evolution and aspects of tectonic history, In: B.E. Tucholke, P.R. Vogt et al., Init. Repts. of the DSDP, 43, Washington, U.S. Government Printing Office, 791–825.

    Google Scholar 

  • Vail, P.R., R.M. Mitchum, Jr., and S. Thompson III. 1977. Global cycles of relative changes of sea level, in Seismic Stratigraphy-Applications to Hydrocarbon Exploration, Am. Assoc. Pet. Geol. Mem. 26, C.E. Payton, ed., American Association of Petroleum Geologists, Tulsa, Okla., 83–98

    Google Scholar 

  • Van der Gracht, W.A.J.M. 1931. Permocarboniferous orogeny in South-central United States, Amer. Assoc. Petrol. Geol. Bull, 15, 991–1057.

    Google Scholar 

  • van Grass, G. 1982. Organic geochemistry of Cretaceous black shale deposits from Italy and France, Delft Univ. Press, 95 pp.

    Google Scholar 

  • Veeh, H.H., 1967. Deposition of uranium from the ocean, Earth and Planet. Sci. Letters, 3, 145–150.

    Google Scholar 

  • Vine, J.D. and E.B. Tourtelot, 1970. Geochemistry of black shale deposits - a summary report, Econ. Geol., 65, 253–272.

    Google Scholar 

  • Wall, J.H.. 1983. Jurassic and Cretaceous foraminiferal biostratigraphy in the eastern Sverdrup Basin, Canadian Arctic Archipelago, Canadian Petroleum Geology, 31, 246281.

    Google Scholar 

  • Waples, D.W. 1983. Reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic, Am. Assoc. Petrol. Geol. Bull., 67, 963–978.

    Google Scholar 

  • Wedepohl, K.H., 1960. Spurenanalytische Untersuchungen an Tiefseetonen aus dem Atlantik, Ein Beitrag zur Deutung der geochemischen Sonderstellung von pelagischen, Tonen. Geochim. Cosmochim. Acta, 18, 200–231.

    Google Scholar 

  • Wedepohl, K.H., 1969–1978. (Edt.) Handbook of Geochemistry, v. II, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Wedepohl, K.H., 1970. Environmental influences on the chemical composition of shales and clays, In: Physics and Chemistry of the Earth, v. 8 ( L.H. Ahrens et al., Eds.), Pergamon Press, Oxford and New York, 305–333.

    Google Scholar 

  • Weissert, H. 1981. The environment of deposition of black shales in the early Cretaceous: an ongoing controversy, In: Warme, J.E., Douglas, R.G., and Winterer, E.L.., eds., The Deep Sea Drilling Project: a decade of progress: Society of Economic Paleontologists and Mineralogists Special Publication 32, 547–560.

    Google Scholar 

  • Weissert, H., J.A. McKenzie, and J.E.T. Channell, 1985. Natural variations in the carbon cycle during the Early Cretaceous, In: The Carbon Cycle and Atmospheric CO2: natural variations Archean to Present (Sundquist, E. and Broecker, W.S., eds.), Am. Geophys. Union, Monograph Ser. 32, 531–547.

    Google Scholar 

  • Wilde, P. and W.B.N. Berry, 1982. Progressive ventilation of the oceans-potential for return to anoxic conditions in the post-Paleozoic, In: Schlanger, S.O. and M.B. Cita, eds., Nature and origin of Cretaceous carbon-rich facies, Academic Press, N.Y., 209224.

    Google Scholar 

  • Williams, D.F., R.C. Thunell, and J.P. Kennett. 1978. Periodic fresh-water flooding and stagnation of the eastern Mediterranean Sea during the late Quaternary, Science, 201, 252–254.

    Google Scholar 

  • Woolnough, W.G., 1937. Sedimentation in barred basins, and source rocks of oil, Amer. Assoc. Petrol. Geol., 21, 1101–1157.

    Google Scholar 

  • Zimmerman, H.B., A. Boersma and F.W. McCoy, 1987. Carbonaceous sediments and paleoenvironments of the Cretaceous South Atlantic Ocean, In: J. Brooks and A. Fleet (eds.), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ., 26, 271–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arthur, M.A., Brumsack, HJ., Jenkyns, H.C., Schlanger, S.O. (1990). Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences. In: Ginsburg, R.N., Beaudoin, B. (eds) Cretaceous Resources, Events and Rhythms. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6861-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6861-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6863-0

  • Online ISBN: 978-94-015-6861-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics