Skip to main content

Energy dispersive x-ray spectrometry

  • Chapter
A Handbook of Silicate Rock Analysis
  • 590 Accesses

Abstract

An energy dispersive x-ray fluorescence spectrometer differs from a wavelength dispersive instrument in that, instead of being based on a Bragg diffracting crystal, the spectrometer uses a solid state ‘lithium drifted silicon detector’ (i.e. Si(Li)) to measure the fluorescence spectrum. Operating principles of the rest of the instrument and practice in analytical applications broadly follow those of the conventional wavelength dispersive technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1983) Studies in `standard samples’ of silicate rocks and minerals 1969–1982. Geological Survey of Canada, Paper 83–15.

    Google Scholar 

  • Aiginger, H., P. Wobrauschek and C. Brauner (1974) Energy-dispersive fluorescence analysis using Bragg-reflected polarized x-rays. Nucl. Instrum. Meth. 120 541–542.

    Google Scholar 

  • Bloomfield, D.J., G. Love and V.D. Scott (1983) Evaluation of dead-time corrections in EDS systems. X-ray Spectrom. 12, 2–7. Brown, G.C., D. J. Hughes and J. Esson (1973) New XRF data retrieval techniques and their application to USGS standard rocks. Chem. Geol. 11, 223–229.

    Google Scholar 

  • Cotten, D. and H.E. Hall (1976) X-ray rare earth analyses using an intrinsic germanium detector. Proc 12th Rare Earth Research Conf. 1, 373–377.

    Google Scholar 

  • Deslattes, R.D. (1983) X-ray fluorescence spectroscopy. Nucl. Instrum. Meth. 208 655–658.

    Google Scholar 

  • Dzubay, T.G., B.V. Jarrett and J.M. Jaklevic (1974) Background reduction in x-ray fluorescence spectra using polarisation. Nucl. Instrum. Meth. 115, 297–299.

    Article  Google Scholar 

  • Erdtmann, G. and W. Soyka (1979) The Gamma-Rays of the Radionuclides. Verlag Chemie, Weinheim.

    Google Scholar 

  • Fink, R.W. (1981) Properties of silicon and germanium semiconductor detectors for x-ray spectra. In: K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust and C.E. Fiori (eds.), Energy Dispersive X-ray Spectrometry. Nat. Bureau Stds Spec. Publ. 604, 534.

    Google Scholar 

  • Fumas, T.C., G.S. Kuntz and R.E. Fumas (1982) Toroidal monochromators in hybrid XRF system improve effectiveness of EDXRF tenfold. Adv. X-ray Anal. 25, 59–62.

    Google Scholar 

  • Gedcke, D.A. (1972) The Si(Li) x-ray energy analysis system: oper- ating principles and performance. X-ray Spectrom. 1, 129–141.

    Article  Google Scholar 

  • Gedcke, D.A., E. Elad and P.B. Denee (1977) An intercomparison of trace element excitation methods for energy dispersive fluorescence analysers. X-ray Spectrom. 6, 21–29.

    Article  Google Scholar 

  • Giauque, R.D., R.B. Garrett and L.Y. Goda (1977a) Determination of forty elements in geochemical samples and coal fly ash by x-ray fluorescence spectrometry. Anal. Chem. 49 1012–1017.

    Google Scholar 

  • Giauque, R.D. R.B. Garrett and L.Y. Goda (1977b) Energy dispersive x-ray fluorescence spectrometry for determination of twenty-six trace and two major elements in geochemical specimens. Anal. Chem. 49 62–67.

    Google Scholar 

  • Gilfrich, J.V., E.F. Skelton, D.J. Nagel, A.W. Webb, S.B. Qadri and J.P. Kirkland (1982) X-ray fluorescence analysis using synchrotron radiation. Adv. X-ray Anal. 26, 313–323.

    Google Scholar 

  • Gladney, E.S., C.E. Burns and I. Roelandts (1983) 1982 compilation of elemental concentrations in eleven United States Geological Survey rock standards. Geostand. Newslett. 7, 3–226.

    Google Scholar 

  • Goulding, F.S., J.M. Jaklevic and B.V. Jarrett (1972) Detector background and sensitivity of semi-conductor x-ray fluorescence spectrometers. Adv. X-ray Anal. 15, 470–482.

    Article  Google Scholar 

  • Govindaraju, K. (1980) Report (1980) on three GIT-IWG rock reference samples: anorthosite from Greenland, AN-G; basalte d’Essey-la-Cote, BE-N; granite de Beauvoir, MA-N. Geostand. Newslett. 4, 49–138.

    Article  Google Scholar 

  • Grodstein, G.W. (1957) X-ray attenuation coefficients from 10 keV to 100 MeV. Nat. Bureau Stds Circular 583.

    Google Scholar 

  • Hebert, A.J. and K. Street (1974) Non-dispersive soft x-ray fluorescence spectrometer for quantitative analysis of the major elements in rocks and minerals. Anal. Chem. 46, 203–207.

    Article  Google Scholar 

  • Holland, J.G. and D.W. Brindle (1966) A self-consistent mass absorption correction for silicate analysis by x-ray fluorescence. Spectrochim. Acta 22, 2083–2093.

    Article  Google Scholar 

  • Jaklevic, J.M. and F.S. Goulding (1978) Energy dispersion. In: H.K. Herglotz and L.S. Birks, X-ray Spectrometry. Marcel Dekker, New York, 17–57.

    Google Scholar 

  • Jaklevic, J.M., F.S.Goulding and D.A. Landis (1972) High rate x-ray fluorescence analysis by pulsed excitation. IEEE Trans. Nucl. Sci. 3, 392.

    Google Scholar 

  • Jaklevic, J.M., D.A. Landis and F.S. Goulding (1976) Energy dispersive x-ray fluorescence spectrometry using pulsed x-ray exci- tation. Adv. X-ray Anal. 19, 253–265.

    Google Scholar 

  • Jenkins, R., R.W. Gould and D. Gedcke (1981) Quantitative X-ray Spectrometry. Marcel Dekker, New York, 172–177.

    Google Scholar 

  • Johnson, R.G. (1984) Trace element analysis of silicates by means of energy-dispersive x-ray spectrometry. X-ray Spectrom. 13, 6468.

    Article  Google Scholar 

  • Kandiah, K., A.J. Smith and G. White (1975) A pulse processor for x-ray spectrometry with Si(Li) detectors. IEEE Trans. Nucl. Sci. NS-22, 2058–2063.

    Google Scholar 

  • Kandiah, K., A. Stirling, D.L. Trotman and G. White (1968) A fast high resolution spectrometer for use with nuclear radiation detectors. Int. Symp. Nuclear Electronics, Versailles 1, 69–1–6922.

    Google Scholar 

  • Kaufman, L. and D.C. Camp (1975) Polarised radiation for x-ray fluorescence analysis. Adv. X-ray Anal. 18, 247–258.

    Article  Google Scholar 

  • Kevex Corporation. XRF applications report: geological applications. Kevex Corp., Foster City, California.

    Google Scholar 

  • Knoth, J. and H. Schwenke (1978) An x-ray fluorescence spectrometer with totally reflecting sample support for trace analysis at the ppb level. Fresnius Z. Anal. Chem. 291, 200–204.

    Article  Google Scholar 

  • Knoth, J. and H. Schwenke (1980) A new totally reflecting x-ray fluorescence spectrometer with detection limits below l0-“ g. Fresnius Z. Anal. Chem. 301, 7–9.

    Article  Google Scholar 

  • Labreque, J.J., H. Schorin, P. Rosales and W.C. Parker (1982) The determination of strontium and yttrium in Venezuelan laterites from Cerro Impacto by both energy-and wavelength-dispersive x-ray fluorescence. Chem. Geol. 35, 357–366.

    Google Scholar 

  • Laurer, G.R., J. Furfaro, M. Carlos, W. Lei, R. Ballad and T.J. Kneip (1982) Energy dispersive analysis of actinides, lanthanides and other elements in soil and sediment samples. Adv. X-ray Anal. 25, 201–208.

    Article  Google Scholar 

  • Link Systems. Instruction Manual: 2010 pulse processor. Link Systems Ltd, High Wycombe, Bucks.

    Google Scholar 

  • Mahan, K.I. and D.E. Leyden (1983) Simultaneous determination of sixteen major and minor elements in river sediments by energy dispersive x-ray fluorescence spectrometry after fusion in lithium tetraborate glass. Anal. Chim. Acta 147 123–131.

    Google Scholar 

  • Markowicz, A. (1984) Theoretical evaluation of the efficiency of Compton scattered radiation method in ED-XRF analysis. X-ray Spectrom. 13, 166–169.

    Article  Google Scholar 

  • McCarthy, J.J. and F.H. Schamber (1981) Least squares fit with digital filter: a status report. In: K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust and C.E. Fiori (eds.), Energy Dispersive X-ray Spectrometry. Nat. Bureau Stds Spec. Publ. 604, 273–296.

    Google Scholar 

  • Norrish, K. and J.T. Hutton (1969) An accurate x-ray spectrographic method for the analysis of a wide range of geological materials. Geochim. Cosmochim. Acta 33, 431–453.

    Article  Google Scholar 

  • Ong, P.S. and J.N. Randall (1978) A focusing x-ray polariser for energy dispersive analysis. X-ray Spectrom. 7, 241–248.

    Article  Google Scholar 

  • Potts, P.J., P.C. Webb and J.S. Watson (1984) Energy dispersive x-ray fluorescence analysis of silicate rocks for major and trace elements. X-ray Spectrom. 13, 2–15.

    Article  Google Scholar 

  • Potts, P.J., P.C. Webb and J.S. Watson (1985) Energy dispersive x-ray fluorescence analysis of silicate rocks: comparisons with wavelength-dispersive performance. Analyst (London) 110, 507513.

    Google Scholar 

  • Potts, P.J., P.C. Webb and J.S. Watson (1986) Selective excitation of Cr, V and Br in silicate rocks by energy dispersive x-ray fluorescence using a cobalt anode x-ray tube. J. Anal. At. Spectrosc. (in press).

    Google Scholar 

  • Ryon, R.W. (1977) Polarised radiation produced by scatter for energy dispersive x-ray fluorescence trace analysis. Adv. X-ray Anal. 20, 575–590.

    Article  Google Scholar 

  • Ryon, R.W. and J.D. Zahrt (1979) Improved x-ray fluorescence capabilities by excitation with high intensity polarised x-rays. Adv. X-ray Anal. 22, 453–460.

    Google Scholar 

  • Sandborg, A.O. and J.C. Russ (1977) Counting performance of pulsed-tube systems. Adv. X-ray Anal. 20, 547–554.

    Article  Google Scholar 

  • Schamber, F.H. (1973) A new technique for deconvolution of complex x-ray energy spectra. Proc. 8th Nat. Conf. on Electron Probe Analysis, New Orleans, Paper 85.

    Google Scholar 

  • Schamber, F.H. (1977) A modification of the linear least-squares fitting method which provides continuum suppression. In: T.G. Dzubay (ed.), X-ray Fluorescence.4nalvsis of Environmental Samples. Ann Arbor Science Publ., 241–257.

    Google Scholar 

  • Spatz, R. and K.H. Lieser (1979) Optimisation of a spectrometer for energy dispersive x-ray fluorescence analysis by x-ray tubes in combination with secondary targets for multielement determination. X-ray Spectrum. 8, 110–113.

    Article  Google Scholar 

  • Statham, P.J. (1977) Deconvolution and background subtraction by least-squares fitting with pre-filtering of spectra. Anal. Chem. 49, 2149–2154.

    Article  Google Scholar 

  • Statham, P.J. (1981) (a) The efficiency of Si(Li) detectors at very low photon energies. (b) Electronic techniques for pulse processing with solid state x-ray detectors. In: K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust and C.E. Fiori (eds.), Energy Dispersive X-ray Spectrometry. Nat. Bureau Stds Spec. Publ. 604, 127–139, 141–164.

    Google Scholar 

  • Updegrove, W.C. (1982) XRF without standards: ratio methods at the USGS emphasise its speed and power. Kevex Analyst 2, 5–7.

    Google Scholar 

  • van Dyck, P. and R. van Grieken (1983) Automated matrix-correction of line ratios in energy dispersive x-ray fluorescence spectrum deconvolution. X-ray Spectrom. 12, 111–114.

    Google Scholar 

  • Van Espen, P. H. Nullens and F. Adams (1980) An in-depth study of energy dispersive x-ray spectra. X-ray Spectrom. 9 126–133. Verbeke, P. and F. Adams (1979) Multi-element analysis of geological samples by energy dispersive x-ray fluorescence. Anal. Chin. Acta 109 85–95.

    Google Scholar 

  • White, E.W. and G.G. Johnson (1970) X-ray Emission and Absorption Wavelengths and Two-Theta Tables ( 2nd edn. ). Am. Soc. for Testing and Materials, ASTM Data Series DS 37A.

    Google Scholar 

  • Wobrauschek, P. and H. Aiginger (1975) Total-reflection x-ray fluorescence spectrometric determination of elements in nano-gram amounts. Anal. Chem. 47, 852–855.

    Article  Google Scholar 

  • Wobrauschek, P. and H. Aiginger (1980) X-ray fluorescence in the ng region using total reflection of the primary beam. Spectrochim. Acta 35B, 607–614.

    Article  Google Scholar 

  • Wobrauschek, P. and H. Aiginger (1983) X-ray fluorescence analysis with a linear polarised beam after Bragg reflection from a flat or a curved single crystal. X-ray Spectrom. 12, 72–78.

    Article  Google Scholar 

  • Woldseth, R. (1973) X-ray Energy Spectrometry. Kevex Corp., Burlingame, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Energy dispersive x-ray spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics