Skip to main content

X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry

  • Chapter
A Handbook of Silicate Rock Analysis

Abstract

X-ray fluorescence spectrometry is a technique for the analysis of bulk specimens. Samples are prepared as compressed powder pellets or fused glass discs and excited with x-ray radiation, normally generated by an x-ray tube operated at a potential of between 10 and 100 kV. Interaction of this primary radiation with atoms of the sample causes ionization of discrete orbital electrons. During the subsequent electronic rearrangement by which the atom then de-excites back to the ground state, fluorescence x-rays of energy characteristic of that element are emitted. The emission intensity of this characteristic radiation is measured with a suitable x-ray spectrometer and compared with that from a standard sample. The technique is one of the most widely used routine instrumental methods of analysing rock samples both for the major elements Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe and selected trace elements, including Rb, Sr, Y, Nb, Zr, Cr, Ni, Cu, Zn, Ga, Ba, Pb, Th, and U. Detection limits for many of these trace elements lie in the range 1 to 10 ppm rock under routine operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1983) Studies in ‘standard samples’ of silicate rocks and minerals 1969–1982. Geol. Surv. Canada, Paper 83–15. Andermann, G. and J.D. Allen. Anal. Chem. 33, 1695.

    Google Scholar 

  • Andermann, G. and J.W. Kemp (1958) Scattered x-rays as internal standards in x-ray emission spectroscopy. Anal. Chem. 30, 13061309.

    Google Scholar 

  • Bambynek, W., B. Crasemann, R.W. Fink, H.-U. Freund, H. Mark, C.D. Swift, R.E. Price and P. Venugopala Rao (1972) X-ray fluorescence yields, Auger and Coster-Kronig transition probabilities. Rev. Mod. Phys. 44, 716–813.

    Google Scholar 

  • Banerjee, P. (1983) A detailed evaluation of counting losses of detectors in wavelength-dispersion x-ray spectroscopy. X-ray Spectrom. 12, 97–105.

    Article  Google Scholar 

  • Bennett, H. and G.J. Oliver (1976) Development of fluxes for the analysis of ceramic materials by x-ray fluorescence spectrometry. Analyst (London) 101, 803–807.

    Article  Google Scholar 

  • Bertin, E.P. (1975) Principles and Practice of X-ray Spectrometric Analysis ( 2nd edn. ). Plenum, New York.

    Book  Google Scholar 

  • Biggar, G.M. (1977) Some disadvantages of Pt95Au5 as a container for molten silicates. Mineral. Mag. 41, 551–556.

    Article  Google Scholar 

  • Bowles, J.F.W. (1978) Quantitative microprobe analysis of uranium minerals. Microscope 26, 55–67.

    Google Scholar 

  • Brown, G.C., D.J. Hughes and J. Esson (1973) New XRF data retrieval techniques and their application to USGS standard rocks. Chem. Geol. 11, 223–229.

    Article  Google Scholar 

  • Claisse, F. (1956) Accurate x-ray fluorescence analysis without internal standard. Preliminary Report No 327, Department of Mines, Quebec.

    Google Scholar 

  • Claisse, F. (1957) Letter to the editor. Norelco Reporter 4, 95–96. Cremer, M. and J. Schiocker (1976) Lithium borate decomposition of rocks, minerals and ores. Am. Mineral. 61, 318–321.

    Google Scholar 

  • Criss, J.W. and L.S. Birks (1968) Calculation methods for flu-orescent x-ray spectrometry. Empirical coefficients versus fun- damental parameters. Anal. Chem. 40, 1080–1086.

    Article  Google Scholar 

  • Eby, G.N. (1972) Determination of rare earth, yttrium and scandium abundances in rocks and minerals by an ion-exchange x-ray fluorescence procedure. Anal. Chem. 44, 2137–2143.

    Article  Google Scholar 

  • Fabbi, B.P. (1978) Geology. In: H.K. Herglotz and L.S. Birks (eds.), X-ray Spectrometry. Marcel Dekker, New York, 297–353.

    Google Scholar 

  • Flanagan, F.J. (1973) 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta 37, 1189–1200.

    Google Scholar 

  • Forte, M. (1983) Fabrication and use of permanent monitors and standards. X-ray Spectrom. 12, 115–117.

    Article  Google Scholar 

  • Fryer, B.J. (1977) Rare earth evidence in iron formation for changing Precambrian oxidation states. Geochim. Cosmochim. Acta 41, 361–367.

    Article  Google Scholar 

  • Galson, D.A., B.P. Atkin and P.K. Harvey (1983) The determination of low concentrations of U, Th and K by XRF spectrometry. Chem. Geol. 38, 225–237.

    Article  Google Scholar 

  • Gladney, E.S., C.E. Burns and I. Roelandts (1983) 1982 compilation of elemental concentrations in eleven United States Geological Survey rock standards. Geostand. Newslett. 7, 3–226.

    Google Scholar 

  • Govindaraju, K. and R. Montanari (1978) Routine performance of a matrix correction-free fluorescence spectrometric method for rock analysis. X-ray Spectrom. 7, 148–151.

    Article  Google Scholar 

  • Govindaraju, K. and H. de la Roche (1977) Rapport (1966–1976) sur les éléments en trace dans trois standards géochimiques du CRPG: Basalte BR et granites, GA et GH. Geostand. Newslett. 1, 67–100.

    Google Scholar 

  • Harvey, P.K. and B.P. Atkin (1981) The rapid determination of Rb, Sr and their ratios in geological materials by x-ray fluorescence spectrometry using a rhodium x-ray tube. Chem. Geol. 32, 29 1301.

    Google Scholar 

  • Harvey, P.K. and B.P. Atkin (1982) Automated x-ray fluorescence analysis. In: Sampling and Analysis for the Mining Industry, Inst. Mining Metall., London, 17–26.

    Google Scholar 

  • Harvey, P.K., D.M. Taylor, R.D. Hendry and F. Bancroft (1973) An accurate fusion method for the analysis of rocks and chemically related materials by x-ray fluorescence spectrometry. X-ray Spectrom. 2, 33–44.

    Article  Google Scholar 

  • Heinrich, K.J.F. (1966) X-ray absorption uncertainty. In: T.D. McKinley, K.J.F. Heinrich and D.B. Wittry (eds.), Electron Microprobe. John Wiley and Sons, New York, 296–377.

    Google Scholar 

  • Holland, J.G. and D.W. Brindle (1966) A self-consistent mass absorption correction for silicate analysis by x-ray fluorescence. Spectrochim. Acta 22, 2083–2093.

    Article  Google Scholar 

  • Hower, J. (1959) Matrix corrections in the x-ray spectrographic trace element analysis of rocks and minerals. Am. Mineral. 44, 19–32.

    Google Scholar 

  • Hutton, J.T. and S.M. Elliott (1980) An accurate XRF method for the analysis of geochemical exploration samples for major and trace elements using one glass disc. Chem. Geol. 29, 1–11.

    Article  Google Scholar 

  • Jenkins, R. (1976) An Introduction to X-ray Spectrometry. Heyden, London.

    Google Scholar 

  • Jenkins, R., R.W. Gould and D. Gedcke (1981) Quantitative X-ray Spectrometry. Marcel Dekker, New York.

    Google Scholar 

  • Jenkins, R. and P.W. Hurley (1968) Escape peak interference in x- ray spectrochemical analysis. Can. Spectrosc. 13, 35–39.

    Google Scholar 

  • Jenkins, R. and J.L. de Vries (1970) Practical X-ray Spectrometry ( 2nd edn. ). Macmillan, London.

    Google Scholar 

  • Jenkins, R. and J.L. de Vries (1978) Worked Examples in X-ray Analysis ( 2nd edn. ). Macmillan, London.

    Google Scholar 

  • Johannes, W. and B. Bode (1978) Loss of iron to the Pt-container in melting experiments with basalts and a method to reduce it.Contrib. Mineral. Petrol. 67, 221–225. de Jongh, W.K. (1973) X-ray fluorescence analysis applying theoretical matrix corrections. Stainless steel. X-ray Spectrom. 2, 15 1158.

    Google Scholar 

  • Kikkert, J. (1983) Practical geochemical analysis of samples of variable composition using x-ray fluorescence spectrometry. Spectrochim. Acta 38B, 809–820.

    Article  Google Scholar 

  • Lachance, G.R. and R.J. Traill (1966) Practical solution to the matrix problem in x-ray analysis. Can. Spectrosc. 11, 43–48.

    Google Scholar 

  • Leake, B.E., G.L. Hendry, A. Kemp, A.G. Plant, P.K. Harvey, J.R. Wilson, J.S. Coats, J.W. Aucott, T. Lunel and R.J. Howarth (1969) The chemical analysis of rock powders by automatic x-ray fluorescence. Chem. Geol. 5, 7–86.

    Google Scholar 

  • Lee, R.F. and D.M. McConchie (1982) Comprehensive major and trace element analysis of geological material by X-ray fluorescence using low dilution fusions. X-ray Spectrom. 11, 55–63.

    Article  Google Scholar 

  • Leoni, L. and M. Saitta (1977) Matrix effect corrections by Ag Ka Compton scattered radiation in the analysis of rock samples for trace elements. X-ray Spectrom. 6, 181–186.

    Article  Google Scholar 

  • Leroux, J. and T.P. Thinh (1977) Revised Tables of X-ray Mass Attenuation Coefficients. Corporation Scientifique Claisse, Quebec.

    Google Scholar 

  • Lindsay, J.R., H.J. Rose and R.R. Larson (1982) An evaluation of the Rasberry-Heinrich model for the analysis of silicate rocks.Applied Spectrosc. 36, 520–523.

    Google Scholar 

  • Loch, G. (1973) Ein beitrag zur Optimierung der röntgenspektralanalyse durch verwendung spezifischer zahlrohrgase. X-ray Spectrom. 2, 125–128.

    Article  Google Scholar 

  • Lucas-Tooth, J. (1978) Electron excitation. In: H.K. Herglotz and L.S. Birks (eds.), X-ray Spectrometry. Marcel Dekker, New York, 111–122.

    Google Scholar 

  • Mahan, K.I. and D.E. Leyden (1982) Techniques for the preparation of lithium tetraborate fused single and multi-element standards. Adv. X-ray Anal. 25, 95–102.

    Article  Google Scholar 

  • le Maitre, R.W. and M.T. Haukka (1973) The effect of prolonged x-ray irradiation on lithium tetraborate glass discs as used in XRF analysis. Geochim. Cosmochim. Acta 37, 708–710.

    Google Scholar 

  • Moseley, H.G.J. (1913) The high frequency spectra of the elements. Phil. Mag. 26, 1024–1034.

    Google Scholar 

  • Moseley, H.G.J. (1914) The high frequency spectra of the elements II. Phil. Mag. 27, 703–714.

    Google Scholar 

  • Nesbitt, R.W., H. Mastins, G.W. Stolz and D.R. Bruce (1976) Matrix corrections in trace element analysis by x-ray fluorescence: an extension of the Compton scattering technique to long wavelengths. Chem. Geol. 18, 203–213.

    Article  Google Scholar 

  • Nisbet, E.G., V.J. Dietrich and A. Esenwein (1979) Routine trace element determination in silicate minerals and rocks by x-ray fluorescence. Fortschr. Miner. 57, 264–279.

    Google Scholar 

  • Norrish, K. and B.W. Chappell (1977) X-ray fluorescence spectrometry. In: J. Zussman (ed.), Physical Methods in Determinative Mineralogy (2nd edn.). Academic Press, London, 201–272.

    Google Scholar 

  • Norrish, K. and J.T. Hutton (1969) An accurate x-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 33, 431–453.

    Article  Google Scholar 

  • Pankhurst, R.J. and R.K. O’Nions (1973) Determination of Rb/Sr and 87Sr/e6Sr ratios of some standard rocks and evaluation of x-ray fluorescence spectrometry in Rb-Sr geochemistry. Chem. Geol. 12, 127–136.

    Article  Google Scholar 

  • Rasberry, S.D. and K.F.J. Heinrich (1974) Calibration for inter-element effects in x-ray fluorescence analysis. Anal. Chem. 46, 8189.

    Article  Google Scholar 

  • Reed, S.J.B. (1975) Electron Microprobe Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, R.C. (1963) Matrix corrections in trace elements analysis by x-ray fluorescence: estimation of the mass absorption coefficient by Compton scattering. Am. Mineral. 48, 1133–1143. Reynolds, R.C. (1967) Estimation of mass absorption coefficients by Compton scattering: improvements and extensions of the method. Am. Mineral. 52, 1493–1502.

    Google Scholar 

  • Riviere, J.C. (1982) Surface specific analytical techniques. Phil. Trans. Roy. Soc. Lond. A305, 545–589.

    Article  Google Scholar 

  • Robinson, D. and M.C. Bennett (1981) XRF determinations of 19 trace elements in international geochemical reference samples.

    Google Scholar 

  • Geostand. Newslett. 5 175–181.

    Google Scholar 

  • Robinson, J.L. and A.E. Davis (1977) Analysis of limestone survey samples by direct electron excitation x-ray spectrometry. Inst.Geol. Sci. London Rpt. 77, 1–7.

    Google Scholar 

  • Rose, H.J., I. Adler and F.J. Flanagan (1962) Use of La203 as a heavy absorber in x-ray fluorescence analysis of silicate rocks. US Geol. Survey Prof. Paper 450-B, 106–121.

    Google Scholar 

  • Schroeder, B. G. Thompson, M. Sulanowska and J.N. Ludden (1980) Analysis of geological materials using an automated x-ray fluorescence system. X-ray Spectrom. 9 198–205.

    Google Scholar 

  • Seaman, A. (1979) A comparison of the transmission properties of 1 pm and 6µm polypropylene flow counter windows. X-ray Spectrom. 8, 7–8.

    Article  Google Scholar 

  • Sumartojo, J. and M.W. Paris (1980) A method for measuring X-ray mass absorption coefficients of geological materials. Chem. Geol. 28, 341–347.

    Article  Google Scholar 

  • Tertian, R. and F. Claisse (1982) Principles of Quantitative X-ray Fluorescence Analysis. Heyden, London.

    Google Scholar 

  • Thomas, L. and M.T. Haukka (1978) XRF determination of trace and major elements using a single fused disc. Chem. Geol. 21, 3950.

    Google Scholar 

  • Togel, K. (1961) Preparation technique for x-ray spectrometry. In: E.A.W. Muller (ed.), Zerstorungsfreie Materialprufung. R. Oldenburg, Munich.

    Google Scholar 

  • Traill, R.J. and G.R. Lachance (1966) Practical solution to the matrix problem in x-ray analysis. II. Application to a multi-component alloy system. Can. Spectrosc. 11 63–71.

    Google Scholar 

  • Turek, A., C. Riddle and T.E. Smith (1977) Determination of Rb and Sr by x-ray fluorescence in measurement of radiometric ages. Can. Spectrosc. 22, 20–24.

    Google Scholar 

  • Verdurmen, E.A.Th. (1977) Accuracy of x-ray fluorescence spectrometric determination of Rb and Sr concentrations in rock samples. X-ray Spectrom. 6, 117–122.

    Article  Google Scholar 

  • Vie le Sage, R., J.P. Quisefit, R. Dejean de La Batie and J. Faucherre (1979) Utilisation du rayonnement primaire diffuse par l’échantillon pour une détermination rapide et précise des éléments traces dans les roches. X-ray Spectrom. 8, 121–128.

    Google Scholar 

  • Walker, D. (1973) Behaviour of x-ray mass absorption coefficients near absorption edges. Reynold’s method revisited. Am. Mineral. 58 1069–1072.

    Google Scholar 

  • White, E.W. and G.G. Johnson (1970) X-ray Emission and Absorption Wavelengths and Two-Theta Tables. ASTM Data series DS37A, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Woldseth, R. (1973) All You Ever Wanted to Know About X-ray Energy Spectrometry. Kevex Corp., Burlingame, California

    Google Scholar 

  • Wybenga, F.T. (1978) The evaluation of thallium acid phthalatecrystal for x-ray fluorescence spectrometry. X-ray Spectrom. 7, 33–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics