Skip to main content

Gas source mass spectrometry

  • Chapter
  • 576 Accesses

Abstract

Geological applications of gas source mass spectrometry are centred on three specialized areas of analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basford, J.R., J.C. Dragon, R.O. Pepin, M.R. Coscio and V.R. Murphy (1973) Krypton and xenon in lunar fines. Proc. 4th Lunar Sci. Conf., 1915–1955.

    Google Scholar 

  • Bigeleisen, J., M.L. Pearlman and H.C. Prosser (1952) Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal. Chem. 24, 1356–1357.

    Article  Google Scholar 

  • Bottomley, D.J., J.D. Ross and W.B. Clarke (1984) Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield. Geochim. Cosmochim. Acta 48, 19731985.

    Google Scholar 

  • Chait, E.M. (1972) Ionisation sources in mass spectrometry. Anal. Chem. 44, 77A - 91A.

    Google Scholar 

  • Clayton, R.N. and T.K. Mayeda (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52.

    Article  Google Scholar 

  • Craig, H. (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834.

    Article  Google Scholar 

  • Craig, H. and J.E. Lupton (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369–385. Dalrymple, G.B. and M.A. Lanphere (1969) Potassium-Argon Dating Principles, Techniques and Applications to Geochronology. W.H. Freeman, San Francisco.

    Google Scholar 

  • Dalrymple, G.B. and M.A. Lanphere (1971) 40Ar/39Ar technique of K-Ar dating: a comparison with the conventional technique. Earth Planet. Sci. Lett. 12, 300–308.

    Google Scholar 

  • Dalrymple, G.B. and M.A. Lanphere (1974) 40Ar/J9Ar age spectra of some undisturbed terrestrial samples. Geochim. Cosmochim. Acta 38, 715–738.

    Google Scholar 

  • Des Marais, D.J. (1983) Light element geochemistry and spallogenesis in lunar rocks. Geochim. Cosmochim. Acta 47, 17691781.

    Google Scholar 

  • Des Marais, D.J. and J.G. Moore (1984) Carbon and its isotopes in mid oceanic basaltic glasses. Earth Planet. Sci. Lett. 69, 4357.

    Google Scholar 

  • Eberhardt, P., 0. Eugster and K. Marti (1965) A redetermination of the isotopic composition of atmospheric neon. Z. Naturforsch. 20a, 623–624.

    Google Scholar 

  • Erdtmann, G. (1976) Neutron Activation Tables. Verlag Chemie, Weinheim.

    Google Scholar 

  • Frick, U. and R.O. Pepin (1981a) On the distribution of noble gases in Allende: a differential oxidation study. Earth Planet. Sci. Lett. 56, 45–63.

    Article  Google Scholar 

  • Frick, U. and R.O. Pepin (1981b) Microanalysis of nitrogen isotope abundances: association of nitrogen with noble gas carriers in Allende. Earth Planet. Sci. Lett. 56, 64–81.

    Article  Google Scholar 

  • Friedman, I. and J.R. O’Neil (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: M. Fleischer (ed.), Data of Geochemistry, US Geol. Surv. Prof. Paper 440KK.

    Google Scholar 

  • Gardiner, L.R., A.J.T. Jull and C.T. Pillinger (1978) Progress towards a direct measurement of 13C/’3C ratios for hydrolysable carbon in lunar soil by static mass spectrometry. Proc. 9th Lunar Planet. Sci. Conf., 2167–2193.

    Google Scholar 

  • Gardiner, L.R. and C.T. Pillinger (1979) Static mass spectrometry for the determination of active gases. Anal. Chem. 51, 1230–1236.

    Article  Google Scholar 

  • Gonfiantini, R. (1978) Standards for stable isotope measurements in natural compounds. Nature (London) 271, 534–536.

    Article  Google Scholar 

  • Haimson, M. and L.P. Knauth (1983) Stepwise fluorination—a useful approach for the isotopic analysis of hydrous minerals. Geochim. Cosmochim. Acta. 47, 1589–1595.

    Article  Google Scholar 

  • Hurlston, J.R. and H.G. Thode (1965a) Variations in the 73S, 34S and 165 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 70, 3475–3484.

    Article  Google Scholar 

  • Hurlston, J.R. and H.G. Thode (19656) Cosmic ray produced 36S and 31S in the metal phase of iron meteorites. J. Geophys. Res. 70, 4435–4442.

    Google Scholar 

  • Kyser, T.K. and J.R. O’Neil (1984) Hydrogen isotope systematics of submarine basalts. Geochim. Cosmochim. Acta. 48, 2123–2133. Kyser, T.K. and W.R. Rison (1982) Rare gas isotope systematics of basic lavas and ultramafic xenoliths. J. Geophvs. Res. 87, 56115630.

    Google Scholar 

  • Lupton, J.E. and H. Craig (1975) Excess ‘He in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 26, 133–139.

    Article  Google Scholar 

  • Mattey, D.P., R.H. Carr, I.P. Wright and C.T. Pillinger (1984) Carbon isotopes in submarine basalts. Earth Planet. Sci. Lett. 70, 196–206.

    Article  Google Scholar 

  • McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857. McKinney, C.R., J.M. McCrea, S. Epstein, H.A. Allen and H.C. Urey (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instrum. 21, 724–730.

    Article  Google Scholar 

  • McNaughton, N.J., P.I. Abell, I.P. Wright, A.E. Fallik and C.T. Pillinger (1983) Preparation of nanogram quantities of deuteromethane for stable carbon isotope analysis. J. Phys. E: Sci. Instrum. 16, 505–511.

    Article  Google Scholar 

  • Merrihue, C. (1965) Trace element determinations and potassium-argon dating by mass spectrometry of neutron irradiated samples (abstract). Trans.. 9m. Geophys. Union 46, 125.

    Google Scholar 

  • Merrihue, C. and G. Turner (1966) Potassium-argon dating by activation with fast neutrons. J. Geophys. Res. 71, 2852.

    Article  Google Scholar 

  • Nier, A.C.O. (1947) A mass spectrometer for isotope and gas analy-sis. Rev. Sci. Instrum. 18, 398–411.

    Article  Google Scholar 

  • Ozima, M., I. Kaneoka and M. Yanagisawa (1979) Temperature and pressure effects on 40Ar-39Ar schematics. Earth Planet. Sci. Lett. 42, 463–472.

    Article  Google Scholar 

  • Pecsok, R.L., L.D. Shields, T. Cairns and I.G. McWilliam (1968) Modern Methods of Chemical Analysis ( 2nd edn. ). John Wiley and Sons, New York.

    Google Scholar 

  • Pillinger, C.T. (1984) Light element stable isotopes in meteorites—from grams to picograms. Geochim. Cosmochim. Acta. 48, 27392–766.

    Article  Google Scholar 

  • Podosek, F.A., J.C. Huneke, D.S. Burnett and G.J. Wasserburg (1971) Isotopic composition of xenon and krypton in the lunar soil and in the lunar wind. Earth Planet. Sci. Leu. 10, 199–216.

    Article  Google Scholar 

  • Poreda, R. and F.R. di Brozolo (1984) Neon isotope variations in Mid-Atlantic Ridge basalts. Earth Planet. Sci. Leu. 69, 277–289.

    Article  Google Scholar 

  • Reynolds, J.H. (1956) High sensitivity mass spectrometer for noble gas analysis. Rev. Sci. Instrum. 27, 928–934.

    Article  Google Scholar 

  • Rison, W. and H. Craig (1983) Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth Planet. Sci. Lett. 66, 407–426.

    Article  Google Scholar 

  • Roboz, J. (1968) Introduction to Mass Spectrometry, Instrumentation and Techniques. Wiley-Interscience, New York.

    Google Scholar 

  • Roddick, J.C. (1978) The application of isochron diagrams in 40Ar- Ar dating: a discussion. Earth Planet. Sci. Lett. 41, 233–244.

    Article  Google Scholar 

  • Roddick, J.C. (1983) High precision intercalibration of 40Ar-39Ar standards. Geochim. Cosmochim. Acta. 47, 887–898.

    Article  Google Scholar 

  • Roddick, J.C., R.A. Cliff and D.C. Rex (1980) The evolution of excess argon in alpine biotites—a °Ar-39Ar analysis. Earth Planet. Sci. Lett. 48, 185–208.

    Article  Google Scholar 

  • Sakai, H., D.J. Des Marais, A. Ueda and J.G. Moore (1984) Concentrations and isotope ratios of carbon, nitrogen and sulphur in ocean-floor basalts. Geochim. Cosmochim. Acta. 48, 2433–2441. Sharma, T. and R. N. Clayton (1965) Measurement of 1801160 ratios of total oxygen of carbonates. Geochim. Cosmochim. Acta. 29, 1347–1353.

    Google Scholar 

  • Sigurgeirsson, T. (1962) Dating Recent Basalt by the Potassium Argon Method. Rept. Physical Lab., Univ. Iceland.

    Google Scholar 

  • Skoog, D.A. and D.M. West (1980) Principles of Instrumental Analysis ( 2nd edn. ). Saunders College/Holt-Saunders Japan, Philadelphia/Tokyo.

    Google Scholar 

  • Steiger, R.H. and E. Jager (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362.

    Article  Google Scholar 

  • Taylor, H.P. and S. Epstein (1962) Relationship between 180/160 ratios in coexisting minerals of igneous and metamorphic rocks. Part 1, principles and experimental results. Geol. Soc. Am. Bull. 73, 461–480.

    Article  Google Scholar 

  • Tetley, N., I. McDougall and H.R. Heydegger (1980) Thermal neutron interferences in the 00Ar/39Ar dating technique. J. Geophvs. Res. 85 (BI2), 7201–7205.

    Article  Google Scholar 

  • Turner, G. (1971) Argon 40-Argon 39 dating: the optimisation of irradiation parameters. Earth Planet. Sci. Lett. 10, 227–234. Ueda, A. and H. Sakai (1983) Simultaneous determinations of the concentrations and isotope ratio of sulphate-sulphur, sulphide-sulphur and carbonate-carbon in geological samples. Geochem. J. 17, 185–196.

    Google Scholar 

  • Urey, H.C. (1948) Oxygen isotopes in nature and the laboratory. Science 108, 489–497.

    Article  Google Scholar 

  • Voshage, H. and H. Feldmann (1978) Investigations on cosmic-ray produced nuclides in iron meteorites. I: The measurement and interpretation of rare gas concentrations. Earth Planet. Sci. Lett. 39, 25–36.

    Article  Google Scholar 

  • Wanke, H. and H. Konig (1959) Eine neue methode zur Kaliumargon-alterbestimmung und ihre Anwendung auf Steinmeteorite. Z. Naturforsch. 14a, 860.

    Google Scholar 

  • Wright, I.P., N.J. McNaughton, A.E. Fallik, L.R. Gardiner and C.T. Pillinger (1983) A high precision mass spectrometer for stable carbon isotope analysis at the nanogram level. J. Phis. E: Sci. Instrum. 16, 497–504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Gas source mass spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics