Skip to main content

Neutron activation analysis

  • Chapter
A Handbook of Silicate Rock Analysis
  • 595 Accesses

Abstract

Neutron activation analyis was first proposed as an analytical technique by von Hevesy and Levi in 1936. However, its successful application to geology (Gordon et al., 1968; Hertogen and Gijbels, 1971) had to await the commercial development of high-resolution germanium detectors during the 1960s to allow satisfactory analysis of the complex gamma spectra obtained from irradiated silicate rock samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1983) Studies of `standard samples’ of silicate rocks and minerals 1969–1982. Geological Survey Canada, Paper 83–15.

    Google Scholar 

  • Adams, F. and R. Dams (1970) Applied Gamma-ray Spectrometry (2nd edn.; 1st edn., C.E. Crouthamel ). Pergamon, Oxford.

    Google Scholar 

  • Amiel, S. and M. Mantel (1981) Measurement of very short-lived nuclides. In: S. Amiel (ed.), Nondestructive Activation Analysis. Elsevier, Amsterdam, 53–70.

    Google Scholar 

  • Baedecker, P.A. (1971) Digital methods of photopeak integration in activation analysis. In: A.O. Brunfelt and E. Steinnes (eds.), Activation Analysis in Geochemistry and Cosmochemistry. Universitetforlaget, Oslo, 175–182.

    Google Scholar 

  • Baedecker, P.A., J.J. Rowe and E. Steinnes (1977) Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems. J. Radioanal. Chem. 40, 115–146.

    Article  Google Scholar 

  • Barnes, S.J. and M.P. Gorton (1984) Trace element analysis by neutron activation with a low flux reactor (Slowpoke II): results for international reference rocks. Geostand. Newslett. 8, 17–23.

    Article  Google Scholar 

  • Bem, H. and D.E. Ryan (1981) Choice of boron shield material in epithermal neutron activation determinations. Anal. Chico. Acta 124, 373–380.

    Article  Google Scholar 

  • Bolton, A., J. Hwang and A.V. Voet (1982) The determination of Sc, Y and selected REE in geological materials by inductively-coupled plasma optical emission spectroscopy. Spectrochim. Acta 38B, 165–174.

    Google Scholar 

  • Borley, G.D. and N. Rogers (1979) Comparison of rare-earth element data obtained by neutron activation analysis using international rock and multielement solution standards. Geostand. Newslett. 3, 89–92.

    Article  Google Scholar 

  • Brunfelt, A.O., I. Roelandts and E. Steinnes (1977) Some new methods for the determination of rare-earth elements in geological materials using thermal and epithermal neutron activation. J. Radioanal. Chem. 38, 451–459.

    Article  Google Scholar 

  • Christensen, L.H. (1979) Comparison between experimental and calculated relative escape peak intensities for an intrinsic Ge detector in the energy region 11–25 keV. X-ray Spectrom. 8, 146148.

    Google Scholar 

  • Cornelius, R., J. Hoste and J. Versieck (1982) Potential interferences inherent in neutron activation analysis of trace elements in biological materials. Talanta 29, 1029–1034.

    Article  Google Scholar 

  • Covell, D.F. (1959) Determination of gamma-ray abundance directly from the total absorption peak. Anal. Chem. 31, 17851790.

    Google Scholar 

  • Covell, D.F., M.M. Sandomire and M.S. Eichen (1960) Anal. Chem. 32, 1086.

    Article  Google Scholar 

  • Crouch, D.F. and R.L. Heath (1963) Routine testing and calibration procedures for multichannel pulse analysers and gamma-ray spectrometers. US Atomic Energy Commission Report, IDO-16923. Croudace, I.W. (1979) Errors in instrumental neutron activation analysis caused by matrix absorption. Chem. Geol. 25, 175–177.

    Google Scholar 

  • Croudace, I.W. (1980) The use of pre-irradiation group separations with neutron activation analysis for the determination of the rare earths in silicate rocks. J. Radioanal. Chem. 59, 323–330.

    Article  Google Scholar 

  • Currie, L.A. (1968) Units for qualitative detection and quantitative determination. Anal. Chem. 40, 586–593.

    Article  Google Scholar 

  • De Soete, D., R. Gijbels and J. Hoste (1972) Neutron Activation Analysis. Wiley-Interscience, London.

    Google Scholar 

  • Duffield, J. and G.R. Gilmore (1979) An optimum method for the determination of rare earth elements by neutron activation analysis. J. Radioanal. Chem. 48, 135–145.

    Article  Google Scholar 

  • Erdtmann, G. (1972) Interference in neutron activation analytical determinations by uranium fission. J. Radioanal. Chem. 10, 137138.

    Google Scholar 

  • Erdtmann, G. (1976) Neutron Activation Tables. Verlag Chemie, Weinheim.

    Google Scholar 

  • Erdtmann, G. and W. Soyka (1979) The Gamma-Rays of the Radionuclides. Verlag Chemie, Weinheim.

    Google Scholar 

  • Evensen, N.M., P.J. Hamilton and R.K. O’Nions (1978) Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42, 1199–1212.

    Article  Google Scholar 

  • Fioratti, M.P. and S.R. Piermattei (1971) Calculation of the escape peak for Ge-Li and Nat radiation detectors. Nucl. lnstrum. Methods 96, 605–608.

    Article  Google Scholar 

  • Flanagan, F. J. (1973) 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta 37, 1189–1200. Frey, F.A., M.A. Haskin, J.A. Poetz and L.A. Haskin (1968) Rare earth abundances in some basic rocks. J. Geophys. Res. 73, 60856098.

    Google Scholar 

  • Girardi, F. and R. Pietra (1976) Multielement and automated radiochemical separation procedures for activation analysis. Atomic Energy Rev. 14, 521–565.

    Google Scholar 

  • Gladney, E.S., C.E. Burns and 1. Roelandts (1983) 1982 compilation of elemental concentrations in eleven United States Geological Survey rock standards. Geostand. Newslett. 7, 3–226.

    Google Scholar 

  • Gladney, E.S., D.B. Curtis and D.R. Perrin (1985) Determination of selected rare earth elements in 37 international geochemical reference samples by instrumental thermal neutrcn capture prompt gamma-ray spectrometry. Geostand. Newslett. 9, 25–30.

    Article  Google Scholar 

  • Gordon, G.E., K. Randle, G.G. Goles, J.B. Corliss, M.H. Beeson and S.S. Oxley (1968) Instrumental activation analysis of standard rocks with high-resolution gamma-ray detectors. Geochim. Cosmochim. Acta 32, 369–396.

    Article  Google Scholar 

  • Grodstein, G.W. (1957) X-ray attenuation coefficients from 10 keV to 100 MeV. Nat. Bur. Stds Circular 583.

    Google Scholar 

  • Gruber, E. (1973) Neutronenselbstabsorption in der aktivierungsanalyse. Z. Anal. Chem. 263, 194–202.

    Article  Google Scholar 

  • Hancock, R.G.V. (1976) Low flux multielement instrumental neutron activation analysis in archaeometry. Anal. Chem. 48, 14431445.

    Google Scholar 

  • Henderson, P. and C.T. Williams (1981) Application of intrinsic Ge detectors to the instrumental neutron activation analysis for rare earth elements in rocks and minerals. J. Radioanal. Chem. 67, 445–452.

    Article  Google Scholar 

  • Hertogen, J. and R. Gijbels (1971) Instrumental neutron activation analysis of rocks with a low-energy photon detector. Anal. Chim. Acta 56, 61–82.

    Article  Google Scholar 

  • Hertogen, J., J. DeDonder and R. Gijbels (1974) Experimental data on photopeak integration methods in activation analysis. Nucl. Instrum. Methods 115, 197–212.

    Article  Google Scholar 

  • Higgins, M.D. (1984) Abundance of boron in international geochemical standards by prompt gamma neutron activation analysis. Geostand. Newslett. 8, 31–34.

    Article  Google Scholar 

  • Hoede, D. and H.A. Das (1981) Accuracy and precision of instrumental neutron activation analysis based on gamma-spectrometry with a planar intrinsic Ge detector. J. Radioanal. Chem. 62, 171186.

    Google Scholar 

  • Hollander, J.M. (1966) The impact of semiconductor detectors on gamma-ray and electron spectroscopy. Nucl. Instrum. Methods 43, 65–109.

    Article  Google Scholar 

  • Hooker, P.J., R.K. O’Nions and R. Pankhurst (1975) Determination of rare-earth elements in USGS standard rocks by mixed-solvent ion exchange and mass spectrometric isotope dilution. Chem. Geol. 16, 189–196.

    Google Scholar 

  • Hughes, D.J. and R.B. Schwartz (1958) Neutron Cross-Sections. US Atomic Energy Commission Report, BNL-325.

    Google Scholar 

  • Huysmans, K. R. Gijbels and J. Hoste (1974) Experimental comparison of multichannel analyser dead-time corrections for short-lived radionuclides. J. Radioanal. Chem. 20 51–69.

    Google Scholar 

  • Ha, P., P. Jagam and G.K. Muecke (1983) Multielement analysis of uraniferous rocks by INAA: special reference to interferences due to uranium and fission of uranium. J. Radioanal. Chem. 79 215–232.

    Google Scholar 

  • Kennedy, G. and A. Fowler (1983) Interference from uranium in neutron activation analysis of rare-earths in silicate rocks. J. Radioanal. Chem. 78, 165–169.

    Article  Google Scholar 

  • Kolesov, G.M. (1976) Determination of rare-earth elements in rocks and meteorites by a radioactivation method. J. Radioanal. Chem. 30, 553–560.

    Article  Google Scholar 

  • Koskelo, M.J., P.A. Aarnio and J.T. Routti (1981) Sampo 80: Minicomputer program for gamma spectrum analysis with nuclide identification. Computer Phys. Comm. 24, 11–35.

    Article  Google Scholar 

  • Kosta, L. (1982) Contamination as a limiting parameter in trace analysis. Talanta 29, 985–992.

    Article  Google Scholar 

  • Kramar, U. (1980) The importance of second order activation in the determination of trace elements in geological samples by instrumental neutron activation analysis. Geochim. Cosmochim. Acta 44, 379–382.

    Article  Google Scholar 

  • Kubota, M. (1977) Interference by neutron induced second order nuclear reactions in activation analysis of rare earths. J. Radioanal. Chem. 36, 565–576.

    Article  Google Scholar 

  • Laul, J.C. and L.A. Rancitelli (1977) Multielement analysis by sequential instrumental and radiochemical neutron activation. J. Radioanal. Chem. 38, 461–475.

    Article  Google Scholar 

  • Laul, J.C. (1979) Neutron activation analysis of geological materials. Atom. Energy Rev. 17, 603–695.

    Google Scholar 

  • Mason, B. (1966) Principles of Geochemistry ( 3rd edn. ). John Wiley and Sons, New York.

    Google Scholar 

  • Moore, W.J. (1966) Physical Chemistry ( 4th edn. ). Longmans, London.

    Google Scholar 

  • Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38, 757–775.

    Article  Google Scholar 

  • Parry, S.J. (1980) Detection limits in epithermal neutron activation analysis of geological material. J. Radioanal. Chem. 59, 423–427.

    Article  Google Scholar 

  • Peisach, M. (1981) Prompt techniques. In: S. Amiel (ed.), Activation Analysis. Elsevier, Amsterdam, 93–111.

    Google Scholar 

  • Perlman, I. and F. Asaro (1969) Pottery analysis by neutron activation. Archaeometry 11, 21–52.

    Article  Google Scholar 

  • Potts, P.J. (1983) Gamma-ray interferences found in the instru- mental neutron activation analysis of silicate rocks. J. Radioanal. Chem. 79, 363–370.

    Article  Google Scholar 

  • Potts, P.J. and R. Hussey (1983) Effect of sample to detector geometry on the accuracy of instrumental neutron activation analysis and implications for the design of a simple automatic sample-changing wheel suitable for the routine counting of low activity geological samples. J. Radioanal. Chem. 78, 339–346. P.tts, P.J., O. Williams Thorpe and J.S. Watson (1981) Determination of the rare earth earth element abundances in 29 international rock standards by instrumental neutron activation analysis: a critical appraisal of calibration errors. Chem. Geol. 34, 331–352.

    Google Scholar 

  • Potts, P.J., O. Williams Thorpe, M.C. Isaacs and D.W. Wright (1985a) High-precision instrumental neutron activation analysis of geological samples employing simultaneous counting with both planar and coaxial detectors. Chem. Geol. 48, 145–155.

    Google Scholar 

  • Potts, P.J. O. Williams Thorpe, M.C. Isaacs and N.W. Rogers (1985b) Instrumental neutron activation analysis of fourteen carbonate reference materials from the NBS and George Frederic Smith and eleven industrial geological samples from the Bureau of Analysed Samples. Geostand. Newslett. 9 173–179.

    Google Scholar 

  • Randa, Z. (1976) Routine neutron activation determination of REE in rocks and similar materials by pre-activation group separation. Radiochem. Radioanal. Lett. 24, 177–188.

    Google Scholar 

  • Rey, P. H. Wakita and R.A. Schmitt (1970) Radiochemical neutron activation analyses of indium, cadmium, yttrium and the 14 rare earth elements in rocks. Anal. Chim. Acta 51 163–178.

    Google Scholar 

  • Ricci, E. and F.F. Dyer (1964) Second-order interference in activation analysis. Nucleonics 22, 45–50.

    Google Scholar 

  • Roelandts, I. (1981) Determination of light rare earth elements in apatite by X-ray fluorescence spectrometry after anion exchange extraction. Anal. Chem. 53 676–680.

    Google Scholar 

  • Roelandts, I. G. Duyckaerts and A.O. Brunfelt (1974) Anion-exchange isolation of rare-earth elements from apatite minerals in methanol-nitric acid medium. Anal. Chim. Acta 73 141148.

    Google Scholar 

  • Routti, J.T. and S.G. Prussin (1969) Photopeak method for the computer analysis of gamma-ray spectra from semiconductor detectors. Nucl. Instrum. Methods 76, 115–124.

    Article  Google Scholar 

  • Schock, H.H. (1977) Comparison of a coaxial Ge(Li) and a planar Ge detector in instrumental neutron activation analysis of geologic materials. J. Radioanal. Chem. 36, 557–564.

    Article  Google Scholar 

  • Smet, T. J. Hertogen, R. Gijbels and J. Roste (1978) A group separation scheme for radiochemical neutron activation analysis for 24 trace elements in rocks and minerals. Anal. Chim. Acta 101 45–62.

    Google Scholar 

  • Staudigel, H. (1979) Chemical analysis of interlaboratory standards. Initial Reports, Deep Sea Drilling Project, Vols. 51, 52, 53, Part 2. US Govt. Printing Office, Washington DC, 1331–1333.

    Google Scholar 

  • Steinnes, E. (1971) Epithermal neutron activation analysis of geological material. In: A.O. Brunfelt and E. Steinnes (eds.), Activation Analysis in Geochemistry and Cosmochemistry. Universitetforlaget, Oslo, 113–128.

    Google Scholar 

  • Steinnes, E. (1976) Simultaneous determination of U, Th, Mo, W, As and Sb in granitic rocks by epithermal neutron activation analysis. Anal. Chem. 48, 1440–1443.

    Article  Google Scholar 

  • Sterlinski, S. (1970) Features of the modified Covell method for computation of total absorption peak areas in complex gamma-ray spectra. Anal. Chem. 42, 151–155.

    Article  Google Scholar 

  • Vobecky, M. (1979) Nuclear interferences of uranium fission products in neutron activation analysis. Radiochem. Radioanal. Leu. 37, 231–232.

    Google Scholar 

  • von Hevesy, G. and H. Levi. (1936) The action of neutrons on the rare earth elements. Det. Kgl. Danske Videnskabernes Selskab Mathematisk-fysiske Meddelelser XIV, 5, as quoted by H.-J. Born (1976) Proc. Int. Conf. Modern Trends in Activation Analysis 1, 2–16.

    Google Scholar 

  • Walsh, J.N., F. Buckley and J. Barker (1981) The simultaneous determination of the rare earth elements in rocks using inductively coupled plasma source spectrometry. Chem. Geol. 33, 141–153.

    Article  Google Scholar 

  • Wasson, J.T. (1968) Quoted in Baedecker, P.A. (1971) q.v. Whittaker, E.J.W. and R. Muntus (1970) Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 34, 945–956.

    Google Scholar 

  • Zimmer, W.H. (1978) What affects a gamma spectrum. E.G XXXXXXX G

    Google Scholar 

  • Ortec systems application studies, PSD No. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Neutron activation analysis. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics