Skip to main content

Other microbeam and surface analysis techniques

  • Chapter
A Handbook of Silicate Rock Analysis
  • 575 Accesses

Abstract

The electron microprobe is by far the most widely used instrument for the analysis of selected areas on the surface of geological samples. However, there are other more specialized techniques that have been applied in more specialized circumstances to geological samples. It is proposed here to describe in outline five of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1983) Studies in ‘standard’ samples of silicate rocks and minerals 1969–1982. Geological Survey Canada, Paper 83–15.

    Google Scholar 

  • Andersen, C.A. (1969) Progress in analytic methods for the ion microprobe mass analyser. Int. J. Mass Spectrom. Ion Phys. 2, 61–74.

    Article  Google Scholar 

  • Andersen, C.A. (1970) Analytic methods for the ion microprobe mass analyser II. Inc J. Mass Spectrom. Ion Phys. 3, 413–428.

    Article  Google Scholar 

  • Andersen, C.A. and J.R. Hinthorne (1973) Thermodynamic approach to quantitative interpretation of sputtered ion mass spectra. Anal. Chem. 45, 1421–1438.

    Article  Google Scholar 

  • Bancroft, G.M., J.R. Brown and W.S. Fyfe (1979) Advances in, and applications of, x-ray photoelectron spectroscopy (ESCA) in mineralogy and geochemistry. Chem. Geol. 25, 227–243.

    Article  Google Scholar 

  • Banner, A.E. and B.P. Stimpson (1974) A combined ion probe/spark source analysis system. Vacuum 24, 511–517.

    Article  Google Scholar 

  • Basutçu, M., J.N. Barrandon, M. Volfinger and J.-L. Robert (1983) A nuclear method for the analysis of light elements (Z (11) in geological samples. Chem. Geol. 40, 353–359.

    Article  Google Scholar 

  • Bertin, E.P. (1975) Principles and Practice of X-ray Spectrometric Analysis ( 2nd edn. ). Plenum, New York.

    Book  Google Scholar 

  • Beusen, J.M., P. Surkyn, R. Gijbels and F. Adams (1983) Quantitative analysis of silicate minerals by secondary ion mass spectrometry and laser microprobe mass analysis—a comparative study. Spectrochim. Acta 38B, 843–851.

    Article  Google Scholar 

  • Bingham, R.A. and P.L. Salter (1976) Analysis of solid materials by laser probe mass spectrometry. Anal. Chem. 48, 1735–1740.

    Article  Google Scholar 

  • Champness, P.E., G. Cliff and G.W. Lorimer (1976) The identi-fication of asbestos. J. Microsc. 108, 231–249.

    Article  Google Scholar 

  • Champness, P.E., G. Cliff and G.W. Lorimer (1982) Quantitative analytical electron microscopy of metals and minerals. Ultra-microscopy 8, 121–132.

    Article  Google Scholar 

  • Clark, P.J., G.F. Neal and R.O. Allen (1975) Quantitative multi-element analysis using high energy particle bombardment. Anal. Chem. 47, 650–658.

    Google Scholar 

  • Compston, W., I.S. Williams and S.W. Clement (1982) U-Pb ages within single zircons using a sensitive high mass-resolution ion microprobe. Proc. 30th Amer. Soc. Mass Spectrometry Conf. (Honolulu), Am. Soc. Mass Spectrom., 593–595.

    Google Scholar 

  • Cookson, J.A., A.T.G. Ferguson and F.D. Pilling (1972) Proton microbeams, their production and use. J. Radioanal. Chem. 12, 39–52.

    Article  Google Scholar 

  • Define, V.R., R.J. Blattner and C.A. Evans (1980) Trace-level microanalysis of carbon and oxygen in electronic materials by Cs bombardment SIMS. In: D.B. Wittry (ed.), Microbeam Analysis-1980. San Francisco Press, San Francisco, 239–242.

    Google Scholar 

  • Exley, R.A. (1983) Evaluation and application of the ion microprobe in the strontium isotope geochemistry of carbonates. Earth Planet. Sci. Lett. 65, 303–310.

    Article  Google Scholar 

  • Exley, R.A. and A.P. Jones (1983) “7Sr/A6Sr in kimberlitic carbonates by ion microprobe: hydrothermal alteration, crustal contamination and relation to carbonatite. Contrib. Mineral. Petrol. 83, 288–292.

    Google Scholar 

  • Froude, D.O., T.R. Ireland, P.D. Kinny, I.S. Williams, W. Compston, I.R. Williams and J.S. Myers (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature 304, 616–618.

    Article  Google Scholar 

  • Gray, A.L. (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst (London) 110, 551–556.

    Article  Google Scholar 

  • Harding-Barlow, I., K.G. Snetsinger and K. Keil (1973) Laser microprobe instrumentation. In: C.A. Andersen, Microprobe Analysis. John Wiley and Sons, New York, 423–455.

    Google Scholar 

  • Hart, S.R., N. Shimizu and D.A. Sverjensky (1981) Lead isotope zoning in galena: an ion microprobe study of galena crystal from the Buick Mine, Southeast Missouri. Econ. Geol. 76, 1873–1878.

    Article  Google Scholar 

  • Hendry, D.A.F., A.R. Chivas, S.J.B. Reed and J.V.P. Long (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralisation.Part II. Ion probe analysis of Cu contents of mafic minerals, Koloula igneous complex. Contrib. Mineral. Petrol. 78, 404–412.

    Article  Google Scholar 

  • Herzog, R.F.K., W.P. Poschenreider, F.G. Rudenauer and F.G. Satkiewicz (1967) Recent results obtained with the sputtering ion source for solids. Proc. 15th Ann. Conf. Mass Spectrometry and Allied Topics (Denver), ASTM E-14, 301–307.

    Google Scholar 

  • Hinthorne, J.R., C.A. Andersen, R.L. Conrad and J.F. Lovering (1979) Single-grain107Pb/-06Pb and U/Pb age determinations with a 10 µm spatial resolution using the ion microprobe mass analyser (IMMA). Chem. Geol. 25, 271–303.

    Article  Google Scholar 

  • Hinton, R.W. and J.V.P. Long (1979) High resolution ion microprobe measurement of lead isotopes: variations within single zircons from Lac Seul, Northwestern Ontario. Earth Planet. Sci. Lett. 45, 309–325.

    Article  Google Scholar 

  • Huntress, W.T. and L. Wilson (1972) An ESCA study of lunar and terrestrial materials. Earth Planet. Sci. Lett. 15, 59–64.

    Article  Google Scholar 

  • Ishkov, Yu. M. and F.G. Reyf (1981) Laser spectral analysis of the liquid in individual inclusions. Geochem. Int. 1980, 76–79.

    Google Scholar 

  • Johansson, S.A.E. and T.B. Johansson (1976) Analytical application of particle-induced x-ray emission. Noel. Instrum. Methods 137, 473–516.

    Article  Google Scholar 

  • Keil, K. and K.G. Snetsinger (1973) Applications of the laser microprobe to geology. In: C.A. Andersen (ed.), Microprobe Analysis. John Wiley and Sons, New York, 457–476.

    Google Scholar 

  • Kovalev, I.D., G.A. Maksimov, A.I. Suchkov and N.V. Larin (1978) Analytical capabilities of laser-probe mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 27, 101–137.

    Article  Google Scholar 

  • Kullerud, G., R.M. Steffen, P.C. Simms and F.A. Rickley (1979) Proton induced x-ray emission (PIXE)—a new tool in geochem istry. Chem. Geol. 25, 245–256.

    Article  Google Scholar 

  • Lovering, J.F. (1973) Ion microprobe mass analyser (IMMA). Ultimate weapon for the geochemist. Comments. Earth Sci. Geophys. 3, 153–163.

    Google Scholar 

  • McHugh, J.A. (1975) Secondary ion mass spectrometry. In: A.W. Czanderna (ed.), dlethods of Surface Analysis. Elsevier, Amsterdam, 223–278.

    Google Scholar 

  • Nakai, I., H. Ogawa, Y. Sugitani, Y. Niwa and K. Nagashima (1976) X-ray photoelectron spectroscopic study of vanadium-bearing aegirines. Mineral. J. 8, 129–134.

    Article  Google Scholar 

  • Piepmeier, E.H. and H.V. Malmstadt (1969) Q-switched laser energy absorption in plume of an aluminium alloy. Anal. Chem. 41, 700707.

    Google Scholar 

  • Reed, S.J.B. (1980) Trace element analysis with the ion probe. Scanning 3, 119–127.

    Article  Google Scholar 

  • Reed, S.J.B. (1981) Secondary-ion spectra of rare earths. In: R.H. Geiss (ed.), Microbeam Analysis-1981. San Francisco Press, San Francisco, 87–90.

    Google Scholar 

  • Reed, S.J.B. (1983) Secondary-ion yields of rare earths. Int. J. Mass Spectrom. Ion Phys. 54, 31–40.

    Article  Google Scholar 

  • Reed, S.J.B. (1984) Secondary-ion mass spectrometry ion probe analysis for rare earths. In: O. Johari (ed.), Scanning Electron Microscopy 1984, 529–535.

    Google Scholar 

  • Reed, S.J.B. and M.C. Enright (1981) Trace element distributions in meteorites determined by ion probe analysis. Proc. Roy. Soc. London A374, 195–205.

    Article  Google Scholar 

  • Reed, S.J.B., J.V.P. Long, J.N. Coles and D.M. Astill (1976) Ion microprobe trace element analysis with high mass resolution. Mt. J. Mass Spectrom. Ion Phys. 22, 333–338.

    Article  Google Scholar 

  • Reed, S.J.B. and D.G.W. Smith (1985) Ion probe determination of rare earth elements in merrillite and apatite in chondrites. Earth Planet. Sci. Lett. 72, 238–244.

    Article  Google Scholar 

  • Reed, S.J.B., D.G.W. Smith and J.V.P. Long (1983) Rare earth elements in chondritic phosphates—implications for ‘Pu chronology. Nature (London) 306, 172–173.

    Article  Google Scholar 

  • Robinson, C.F. (1973) Ion microprobe instrumentation. In: C.A. Andersen (ed.), Microprobe Analysis. John Wiley and Sons, New York, 423–455.

    Google Scholar 

  • Russell, S.B., C.W. Schulte, S. Falq and J.L. Campbell (1981) Specimen backings for proton-induced x-ray emission analysis. Anal. Chem. 53, 571–574.

    Article  Google Scholar 

  • Shimizu, N. (1978) Analysis of the zoned plagioclase of different magmatic environments: a preliminary ion-microprobe study. Earth Planet. Sci. Leu. 39, 398–406.

    Article  Google Scholar 

  • Shimizu, N. and S.R. Hart (1982) Applications of the ion microprobe to geochemistry and cosmochemistry. Ann. Rev. Earth Planet. Sci. 10, 483–526.

    Article  Google Scholar 

  • Shimizu, N., M.P. Semet and C.J. Allegre (1978) Geochemical applications of quantitative ion-microprobe analysis. Geochim. Cosmochim. Acta 42, 1321–1334.

    Article  Google Scholar 

  • Stacey, J.S., M.H. Delevaux and T.J. Ulrych (1969) Some triple filament lead isotope measurements and an absolute growth curve for single-stage leads. Earth Planet. Sci. Lett. 6, 15–25.

    Article  Google Scholar 

  • Stucki, J.W., C.B. Roth and W.E. Baitinger (1976) Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA). Clays Clay Mineral. 24, 289–292.

    Article  Google Scholar 

  • Thompson, M. and J.N. Walsh (1983) A Handbook of Inductively Coupled Plasma Spectrometry. Blackie, Glasgow and London.

    Google Scholar 

  • Tsui, T.E., H.D. Holland and K.G. Snetsinger (1975) Laser microprobe analysis of fluid inclusions. Econ. Geol. 70, 1331.

    Google Scholar 

  • Wilson, G.C. and J.V.P. Long (1983) The distribution of lithium in some Cornish minerals: ion microprobe measurements. Mineral. Mag. 47, 191–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Other microbeam and surface analysis techniques. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics