Skip to main content

Nutrients and nutrient cycles

  • Chapter
  • 163 Accesses

Abstract

Because it is ultimately dispersed back to space as heat, energy flows in only one direction through an ecosystem. In contrast, the materials from which living matter is fashioned are in constant circulation back and forth between plants and animals and the non-living environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  • Abelson, P. H. 1986. Science 231, 1233.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, I. J. 1983. The significance of ectomycorrhizas in the nitrogen cycle. In Nitrogen as an ecological factor, J. A. Lee et al. (eds), 69–94. Oxford: Blackwell.

    Google Scholar 

  • Alexander, M. 1971. Introduction to soil microbiology, 2nd edn. London: Wiley.

    Google Scholar 

  • Anderson, A. J. and J. Underwood 1959. Trace element deserts. Sci. Am. 213 (1), 97–112.

    Article  Google Scholar 

  • Anderson, J. M. 1981. Ecology for environmental sciences. London: Edward Arnold. (Excellent introductory text.)

    Google Scholar 

  • Anderson, J. W. and P. Nelson 1983. Interactions between soil arthropods in carbon, nitrogen and mineral element fluxes from decomposing leaf matter. In Nitrogen as an ecological factor, J. A. Lee et al. (eds), 413–32. Oxford: Blackwell.

    Google Scholar 

  • Berner, R. A. (ed.) 1982. Geochemical cycles of nutrient elements. Am. J. Sci. 282 (4), 401–542.

    Google Scholar 

  • Birk, E. M. and P. M. Vitousek 1986. Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67, 68–79.

    Article  Google Scholar 

  • Bradshaw, A. D. and M. J. Chadwick 1978. The restoration of derelictland. Oxford: Blackwell.

    Google Scholar 

  • Brooks, R. R. 1983. Biological methods of prospecting for minerals. New York: Wiley.

    Google Scholar 

  • Budyko, M.I. 1958. The heat balance of the Earth’s surface. US Weather Bureau.

    Google Scholar 

  • Budyko M. I. 1974. Climate and life. London: Academic Press.

    Google Scholar 

  • Clarkson, D. T. 1966. Aluminium tolerance in the genus Agrostis. J. Ecol. 54, 167–78.

    Article  Google Scholar 

  • Cole, A. and J. Raup 1980. Elemental cycling in four ecosystems. In Dynamic processes of forest ecosystems, D. E. Reickle (ed.), 341–410. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cole, D. W. 1981. Nitrogen uptake and translocation in forest ecosystems. In Nitrogen cycling in terrestrial ecosystems: processes, ecosystem strategies and management strategies, F. E. Clark and T. H. Rosswall (eds), 219–32. Ecol. Bull. NFR, no. 33.

    Google Scholar 

  • Cole, M. M. and R. F. Smith 1984. Vegetation as an indicator of environmental pollution. Trans. Inst. Br. Geog. (NS) 9, 477–93.

    Article  Google Scholar 

  • Collins, N. M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea savannas of Nigeria. Oecologica (Berlin) 51, 389–99.

    Article  Google Scholar 

  • Crittenden, P. D. 1983. The role of lichens in the nitrogen economy of sub-arctic woodlands: nitrogen loss from the nitrogen-fixing lichen Stereocaulon paschele during rainfall. In Nitrogen as an ecological factor, J. A. Lee et al. (eds), 43–68. Oxford: Blackwell.

    Google Scholar 

  • Domergues, J. et al. 1985. L’azote en agriculture tropicale. La Recherche 162, 22–31.

    Google Scholar 

  • Fitzpatrick, E. A. 1980. Soils: their formation, classification and distribution. London: Longman.

    Google Scholar 

  • Francis, H. 1976. New Sci. 69 (987), 329–32.

    Google Scholar 

  • Gates, D.M. 1962. Energy exchange in the biosphere. New York: Harper & Row.

    Google Scholar 

  • Gholz, H. L., R. F. Fisher and W. L. Pritchett 1985. Nutrient dynamics in slash-pine stands. Ecology 66, 647–59.

    Article  Google Scholar 

  • Givnish, H. L., J. L. Burkhardt, R. E. Hoppel and J. E. Weintraub 1984. Carnivory in the bromeliad Brachina reducta. Am. Nat. 122, 479–97.

    Article  Google Scholar 

  • Graham, R. D. 1983. Effects of nutrient stress and susceptibility of plants to disease with particular reference to trace elements.Adv. Bot. Res. 16, 221–76.

    Article  Google Scholar 

  • Hemming, B. C. 1982. J. Plant Nutr. 5, 683–702.

    Article  CAS  Google Scholar 

  • Hemming, B. C. and G. A. Strobel 1982. In Proc. First Symp. Genetic Specificity Mineral Nutrition Plants, Serbian Academy of Science.

    Google Scholar 

  • Hinrichsen, D. 1987. Tree death and forest death. BioScience 37, 542–3.

    Google Scholar 

  • Högberg, P. 1986. Nitrogen fixation and nutrient relations in savanna woodland trees. J. Appl. Ecol. 23, 675–88. (This paper demonstrates that N2-fixing species have definite limitations in some environments, especially those where soil nitrogen and phosphorus are abundant.)

    Article  Google Scholar 

  • Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science 105, 367–8.

    Article  PubMed  CAS  Google Scholar 

  • Holland, H. D. 1984. The chemical evolution of the atmosphere and oceans. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Houghton, R. A. 1987. Terrestrial metabolism and atmospheric CO2 concentrations. BioScience 37, 672–9.

    Google Scholar 

  • Huston, J. 1980. Soil nutrients and tree species richness in Costa Rican rain forest. J. Biogeog. 7, 147–59.

    Article  Google Scholar 

  • Janos, D. P. 1983. Tropical mycorrhiza, nutrient cycles and plant growth. In Tropical rain forest: ecology and management, S. L. Sutton et al. (eds). Oxford: Blackwell.

    Google Scholar 

  • Jones, A. G. 1983. Plants and microclimate. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jordan, C. F. 1985. Nutrient cycling in tropical forest ecosystems. New York: Wiley.

    Google Scholar 

  • Kellman, M. and A. Carthy 1986. Magnitude of nutrient influxes from atmospheric sources to a Central American Pinus caribaea woodland (Belize). J. Appl. Ecol. 23, 211–26.

    Article  Google Scholar 

  • Khalil, M. A. R. and R. A. Rasmussen 1984. Carbon monoxide in the Earth’s atmosphere: increasing trend. Science 224, 54–5.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, P. J. 1949. Plant and soil water relationships. New York: McGraw-Hill.

    Google Scholar 

  • Kramer, P. J. 1962. The role of water in tree growth. In Tree growth, T. T. Kuzlowski (ed.). New York: Ronald Press.

    Google Scholar 

  • LaMarche V. C. et al. 1984. Increasing atmospheric CO2: tree ring evidence for growth enhancement in natural vegetation. Science 225, 1019–21.

    Article  Google Scholar 

  • Last, F. T. 1962. Plant Pathol. 11, 133–5.

    Article  CAS  Google Scholar 

  • Lee, J. A. and G. R. Stewart 1978. Ecological aspects of nitrogen assimilation. Adv. Bot. Res. 6, 2–39.

    Google Scholar 

  • Lindberg, S. E., G. M. Lovett, D. D. Richter and D. W. Johnson 1986. Atmospheric deposition and canopy interaction of major ions in a forest. Science 231, 141–5.

    Article  PubMed  CAS  Google Scholar 

  • Lion, L. W. and J. D. Leckie 1981. The biogeochemistry of the air-sea interface. Annu. Rev. Earth Planet Sci. 9, 449–86.

    Article  CAS  Google Scholar 

  • Lockwood, J. G. 1983. Influence of vegetation in the Earth’s climate. Prog. Phys. Geog. 7, 81–99.

    Article  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen and phosphorus transfer by world rivers. Am. J. Sci. 282, 401–50.

    Article  CAS  Google Scholar 

  • Nye, P. H. 1979. Soil properties controlling the supply of nutrients to the root surface. In The soil-root interface, J. L. Harley and R. S. Russel (eds), 39–69. New York and San Francisco: Academic Press.

    Google Scholar 

  • Ovington, J. D. 1965. Organic production, turnover and mineral cycling in woodlands. Biol. Rev. 40, 295–336.

    Article  Google Scholar 

  • Pate, T. S. 1983. Patterns of nitrogen metabolism in higher plants and their ecological significance. In Nitrogen as an ecological factor, J. A. Lee et al. (eds), 225–55. Oxford: Blackwell.

    Google Scholar 

  • Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Arts 193, 120–45.

    Article  CAS  Google Scholar 

  • Penman, H. L. 1956. Evaporation: an introductory survey. Neth. J. Agric. Sci. 4, 9–29.

    Google Scholar 

  • Penman, H. L. 1970. The water cycle. Sci. Am. 223 (3), 98–110.

    Article  Google Scholar 

  • Proctor, J. 1971. The plant ecology of serpentine. J. Ecol. 59, 375–410.

    Article  Google Scholar 

  • Proctor, J. 1983a. Mineral nutrients in tropical forests. Prog. Phys. Geog. 7, 422–31.

    Article  Google Scholar 

  • Proctor, J. 1983b. Tropical forest litterfall. I. Problems of data comparison. In Tropical rain forest: ecology and management, S. L. Sutton et al. (eds), 267–73. Oxford: Blackwell.

    Google Scholar 

  • Proctor, J. 1984. Tropical forest litterfall. II. The data set. In Tropical rain forest: ecology and management, S. L. Sutton et al. (eds). Supplementary volume, Proc. Leeds Phil. Lit. Soc. (Science Section).

    Google Scholar 

  • Robertson, G. P. and T. Roswall 1986. Nitrogen in West Africa: the regional cycle. Ecol. Mono. 56, 42–72.

    Article  Google Scholar 

  • Rodin, L. E. and N. I. Bazilevich 1967. Production and mineral cycling in terrestrial vegetation. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Rorison, I. H. 1980. The effects of soil acidity on nutrient availability and plant response. In Effects of acid precipitation on terrestrial ecosystems, T. C. Hutchinson and M. Havas (eds), 283–304. New York: Plenum Press.

    Chapter  Google Scholar 

  • Rorison, I. H. 1985. Nitrogen source and the tolerance of Deschampsia flexuosa, Holcus lanatus and Bromus erectus to aluminium during seedling growth. J. Ecol. 73, 83–90.

    Article  CAS  Google Scholar 

  • Rorison, I. H. 1987. Mineral nutrition in time and space. New Phys. 106, 79–82.

    Article  Google Scholar 

  • Seddon, G. 1974. Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol. J. Linn. Soc. 6 (1), 65–87.

    Article  CAS  Google Scholar 

  • Servant, J., R. Delmos, J. Ranker and M. Rodriguez 1984. Aspects of the cycle of inorganic N compounds in the tropical rain forest of the Ivory Coast. J. Atmos. Chem. 1, 391–435.

    Article  CAS  Google Scholar 

  • Shukla, J. and Y. Mintz 1982. Influence of land surface evapotranspiration on the Earth’s climate. Science 215, 1498–500.

    Article  PubMed  CAS  Google Scholar 

  • Stålfelt, M. G. 1972. Stålfelt’s plant ecology. London: Longman.

    Google Scholar 

  • Staaf, H. 1980. Release of plant nutrients from decomposing leaf litter in a southern Swedish beech forest. Holarctic Ecol. 3, 129–36.

    Google Scholar 

  • Sutcliffe, J. F. 1979. Plants and water, 2nd edn. London: Edward Arnold. (A particularly clear exposition beyond the introductory level.)

    Google Scholar 

  • Sutcliffe, J. F. and D. A. Baker 1981. Plants and mineral salts, 2nd edn. London: Edward Arnold. (Authoritative companion volume to Sutcliffe (1979) above.)

    Google Scholar 

  • Thornthwaite, C. W. and J. R. Mather 1956. Instructional tables for computing the potential evapotranspiration and the water balance. Publ. Climatol. 10, 185–311.

    Google Scholar 

  • Turner, N. C. and P. J. Kramer 1980. Adaptations of plants to water and high temperature stress. New York: Wiley.

    Google Scholar 

  • US DOE 1986. US Dept of Energy Reports, TRO 30 and TRO 16.

    Google Scholar 

  • Valentyne, J. R. 1978. Today is yesterday’s tomorrow. Int. Ver. Limnol. Verh. 29, 1–12.

    Google Scholar 

  • Vitousek, P. M. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–72.

    Article  Google Scholar 

  • Watts, D. 1971. Principles of biogeography. London: McGraw-Hill.

    Google Scholar 

  • Watts, I. E. M. 1955. Equatorial weather. London: University of London Press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 A. S. Collinson

About this chapter

Cite this chapter

Collinson, A.S. (1988). Nutrients and nutrient cycles. In: Introduction to World Vegetation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3935-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3935-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-04-581031-4

  • Online ISBN: 978-94-015-3935-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics