Skip to main content

Isotopic modification of the continental crust: implications for the use of isotope tracers in granite petrogenesis

  • Chapter
High-temperature Metamorphism and Crustal Anatexis

Part of the book series: The Mineralogical Society Series ((MIBS,volume 2))

Abstract

The use of isotope systematics in the study of igneous and metamorphic processes has revolutionized our understanding of the geochemical evolution of the Earth. This technique has been particularly important in studies of crustal magmatism, and has permitted the identification of granitoid source regions and the evaluation of magmatic mixing process (e. g. O’Neil & Chappell 1977, Taylor & Silver 1978, Allègre & Ben Othman 1980, Farmer & DePaolo 1983, Fleck & Criss 1985, Taylor 1980, DePaolo 1981, Vitrac-Michard et al. 1980). More recently, these studies have been expanded to include metamorphic processes and fluid (in addition to magma) transport at all levels in the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre, C. J. & D. Ben Othman 1980. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286, 335–41.

    Article  Google Scholar 

  • Ashworth, J. R. (ed.) 1985. Migmatites. Glasgow: Blackie.

    Google Scholar 

  • Banda, E. & S. M. Wickham (eds) 1986. The Geological Evolution of the Pyrenees. Tectonophysics 129.

    Google Scholar 

  • Ben Othman, D., S. Fourcade & C. J. Allègre 1984. Recycling processes in granite-granodiorite complex genesis: the Querigut case studied by Nd-Sr isotope systematics. Earth and Planetary Science Letters 69, 290–300.

    Article  Google Scholar 

  • Bickle, M. J., S. M. Wickham, H. J. Chapman & H. P. Taylor Jr 1988. A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 100, 399–417.

    Article  Google Scholar 

  • Bowen, N. L. 1928. The evolution of the igneous rocks. Reprinted 1956, New York: Dover.

    Google Scholar 

  • Burke, W. H., R. E. Dennison, E. A. Hetherington, R. B. Koepnick, H. F. Nelson & J. B. Otto 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–19.

    Article  Google Scholar 

  • Crittenden, M. D. Jr, P. J. Coney & G. H. Davis 1980. Cordilleran metamorphic core complexes. Geological Society of America, Memoir 153, 490 pp.

    Google Scholar 

  • Dalimeyer, R. D., A. W. Snoke & E. H. McKee 1986. The Mesozoic-Cenozoic tectonothermal evolution of the Ruby Mountains-East Humboldt Range, Nevada: a Cordilleran metamorphic core complex. Tectonics 5, 931–54.

    Article  Google Scholar 

  • DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202.

    Article  Google Scholar 

  • Ernst, G. (ed.) 1988. Metamorphism and crustal evolution of the Western United States. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Farmer, G. L. & D. J. DePaolo 1983. Origin of Mesozoic and Tertiary granite in the Western United States and implications for pre-Mesozoic crustal structure I. Nd and Sr isotopic studies in the Geocline of the Northern Great Basin. Journal of Geophysical Research 88, 3379–401.

    Article  Google Scholar 

  • Fleck, R. J. & R. E. Criss 1985. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. Contributions to Mineralogy and Petrology 90, 291–308.

    Article  Google Scholar 

  • Flood, R. H. and S. E. Shaw 1977. Two ‘S-type’ granite suites with low initial 87Sr/86Sr ratios from the New England batholith, Australia. Contributions to Mineralogy and Petrology 61, 163–73.

    Article  Google Scholar 

  • Fourcade, S. & C. J. Allègre 1981. Trace element behaviour in granite genesis: a case study. The calc-alkaline plutonic association from the Querigut complex (Pyrenees, France). Contributions to Mineralogy and Petrology 76, 177–95.

    Article  Google Scholar 

  • Frost T. P. & G. A. Mahood 1988. Field, chemical and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin 99, 272–91.

    Article  Google Scholar 

  • Garlick, G. D. & S. Epstein 1966. Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochimica et Cosmochimica Acta 31, 181–214.

    Article  Google Scholar 

  • Gupta, L. N. & W. Johannes 1982. Petrogenesis of a stromatic migmatite (Nelaug, South Norway). Journal of Petrology 23, 548–67.

    Google Scholar 

  • Hensel, H. D., M. T. McCulloch & B. W. Chappell 1985. The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochimica et Cosmochimica Acta 49, 369–84.

    Article  Google Scholar 

  • Holland, H. D. 1984. The chemical evolution of the atmosphere and oceans. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Huppert, H. E. & R. S. J. Sparks 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599–624.

    Google Scholar 

  • Jäger E. & H. J. Zwart 1968. Rb-Sr age determinations of some gneisses and granites of the Aston-Hospitalet massif (Pyrenees). Geologie en Mijnbouw 47, 349–57.

    Google Scholar 

  • Joplin, G. A. 1942. Petrological studies in the Ordovician of New South Wales. I. The Cooma complex. Proceedings of the Linnean Society of New South Wales 67, 159–96.

    Google Scholar 

  • Kistler, R. W., E. D. Ghent & J. R. O’Neil 1981. Petrogenesis of garnet two-mica granites in the Ruby Mountains, Nevada. Journal of Geophysical Research 86, 10 591–606.

    Google Scholar 

  • Lee, D. E., R. W. Kistler, I. Friedman & R. E. van Loenen 1981. Two-mica granites of northeastern Nevada. Journal of Geophysical Research 86, 10 607–16.

    Google Scholar 

  • Lush, A. P., A. J. McGrew, A. W. Snoke & J. E. Wright 1988. Allochthonous Archean basement in the northern East Humboldt Range, Nevada. Geology 16, 349–53.

    Article  Google Scholar 

  • Majoor, F. J. M. & H. N. A. Priem 1987. Rb-Sr whole-rock investigations in the Aston massif, central Pyrenees. Geologische Rundschau 76, 787–94.

    Article  Google Scholar 

  • Mehnert, K. R. 1968. Migmatites and the origin of granitic rocks. Amsterdam: Elsevier.

    Google Scholar 

  • Miller, E. L., P. B. Gans, J. E. Wright & J. F. Sutter 1988. Metamorphic history of the east-central Basin and Range Province: tectonic setting and relationship to magmatism. In Metamorphism and crustal evolution of the Western United States, W. G. Ernst (ed.), 649–82. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Munksgaard, N. C. 1988. Source of the Cooma Granodiorite, New South Wales; a possible role of fluid-rock interactions. Australian Journal of Earth Sciences 35, 363–77.

    Article  Google Scholar 

  • Nabelek, P. I., T. C. Labotka, J. R. O’Neil & J. J. Papike 1984. Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contributions to Mineralogy and Petrology 86, 25–34.

    Article  Google Scholar 

  • Norton, D. & H. P. Taylor Jr 1979. Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. Journal of Petrology 20, 421–86.

    Google Scholar 

  • Olsen S. N. 1984. Mass-balance and mass-transfer in migmatites from the Colorado Front Range. Contributions to Mineralogy and Petrology 85, 30–44.

    Article  Google Scholar 

  • O’Neil, J. R. & B. W. Chappell 1977. Oxygen and hydrogen isotope relations in the Berridale batholith. Journal of the Geological Society of London 133, 559–71.

    Article  Google Scholar 

  • Peucat, J. J., P. Jegouzo, P. Vidal & J. Bernard-Griffiths 1988. Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth and Planetary Science Letters 88, 60–8.

    Article  Google Scholar 

  • Pidgeon, R. T. & W. Compston 1965. The age and origin of the Cooma granite and its associated metamorphic zones, New South Wales. Journal of Petrology 6, 193–222.

    Google Scholar 

  • Reynolds, D. L., 1946. The sequence of geochemical changes leading to granitization. Quarterly Journal of the Geological Society of London 102, 389–446.

    Article  Google Scholar 

  • Rye, R. O., B. R. Doe & J. D. Wells 1974. Stable isotope and lead isotope studies of the Cortez, Nevada, gold deposit and surrounding area. Journal of Research of the United States Geological Survey 2, 13–23.

    Google Scholar 

  • Sheppard, S. M. F. 1986. Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eurasia and Oceanic Islands. In Stable Isotopes in High Temperature Geological Processes, J. W. Valley, H. P. Taylor, Jr & J. R. O’Neil (eds), 319–72. Reviews in Mineralogy, vol. 16. Washington, D.C.: Mineralogical Society of America.

    Google Scholar 

  • Snoke, A. W. & D. M. Miller 1988. Metamorphic and tectonic history of the northeastern Great Basin. In Metamorphism and crustal evolution of the Western United States, W. G. Ernst (ed.), 606–48. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Solomon, G. C. & H. P. Taylor Jr 1989. Isotopic evidence for the origin of Mesozoic and Cenozoic granitic plutons in the northern Great Basin. Geology 17, 591–4.

    Article  Google Scholar 

  • Sparks, R. S. J. & L. A. Marshall 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research 29, 99–124.

    Article  Google Scholar 

  • Taylor, H. P. Jr 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth and Planetary Science Letters 47, 243–54.

    Article  Google Scholar 

  • Taylor, H. P. Jr & S. M. F. Sheppard 1986. Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In Stable Isotopes in High Temperature Geological Processes, J. W. Valley, H. P. Taylor, Jr & J. R. O’Neil (eds) 227–72. Reviews in Mineralogy, vol. 16. Washington, D.C.: Mineralogical Society of America.

    Google Scholar 

  • Taylor, H. P. Jr & L. T. Silver 1978. Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. In Short papers of the fourth International Conference on Geochronology, Cosmochronology, and Isotope Geology, 423–6. U.S. Geological Survey Open-file report 78–701.

    Google Scholar 

  • Vitrac-Michard, A. & C. J. Allègre 1975. A study of the formation and history of a piece of continental crust by 87Rb-87Sr method: the case of the French Oriental Pyrenees. Contributions to Mineralogy and Petrology 50, 257–85.

    Article  Google Scholar 

  • Vitrac-Michard, A., F. Albarède, C. Dupuis & H. P. Taylor, Jr 1980. The genesis of Variscan (Hercynian) plutonic rocks: inferences from Sr, Pb and O studies of the Maladeta igneous complex, Central Pyrenees, Spain. Contributions to Mineralogy and Petrology 72, 57–72.

    Article  Google Scholar 

  • Vitrac-Michard, A., F. Albarède & C. J. Allègre 1981. Lead isotopic composition of Hercynian granitic K-feldspars constrains continental genesis. Nature 291, 460–4.

    Article  Google Scholar 

  • White A. J. R. & B. W. Chappell 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 169–81.

    Article  Google Scholar 

  • White A. J. R., J. D. Clemens, J. R. Holloway, L. T. Silver, B. W. Chappell & V. J. Wall 1986. S-type granites and their probable absence in southwestern North America. Geology 14, 115–18.

    Article  Google Scholar 

  • Wickham, S. M. 1987a. Crustal anatexis and granite petrogenesis during low pressure regional metamorphism: the Trois Seigneurs Massif, Pyrenees, France. Journal of Petrology 28, 127–69.

    Google Scholar 

  • Wickham, S. M. 1987b. The segregation and emplacement of granitic magmas. Journal of theGeological Society of London 144, 281–97.

    Article  Google Scholar 

  • Wickham, S. M. & M. T. Peters 1988. Fluid and melt transport in anatectic environments. GSA abstract, Denver, Colorado. Geological Society of America, Abstracts with Programs 20, A304.

    Google Scholar 

  • Wickham, S. M. & H. P. Taylor Jr 1985. Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane: the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–37.

    Article  Google Scholar 

  • Wickham, S. M. & H. P. Taylor Jr 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. Contributions to Mineralogy and Petrology 95, 255–68.

    Article  Google Scholar 

  • Wickham, S. M. & H. P. Taylor Jr 1989. Hydrothermal systems associated with regional metamorphism and crustal anatexis: examples from the Pyrenees, France. In Special volume onfluids and crustal processes, National Research Council (in press).

    Google Scholar 

  • Wickham, S. M., H. P. Taylor Jr & A. W. Snoke 1987. Fluid-rock-melt interaction in metamorphic core complexes — a stable isotope study of the Ruby Mountains — East Humboldt Range, Nevada. GSA Abstract, Hilo, Hawaii. Geological Society of America, Abstracts withPrograms 19(6), 463.

    Google Scholar 

  • Wright, J. E. & A. W. Snoke 1986. Mid-Tertiary mylonitization in the Ruby Mountain — East Humboldt Range metamorphic core complex, Nevada. Geological Society of America, Abstracts with Programs 18, 795.

    Google Scholar 

  • Wyborn, L. A. I. & B. W. Chappell 1983. Chemistry of the Ordovician and Silurian greywackes of the Snowy Mountains, southeastern Australia: an example of chemical evolution of sediments with time. Chemical Geology 39, 81–92.

    Article  Google Scholar 

  • Zwart, H. J. 1962. On the determination of polymetamorphic mineral associations, and its application to the Bosost area (Central Pyrenees). Geologische Rundschau 52, 38–65.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 J.R. Ashworth, M. Brown & contributors

About this chapter

Cite this chapter

Wickham, S.M. (1990). Isotopic modification of the continental crust: implications for the use of isotope tracers in granite petrogenesis. In: Ashworth, J.R., Brown, M. (eds) High-temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3929-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3929-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3931-9

  • Online ISBN: 978-94-015-3929-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics