Skip to main content

A model for rates of disequilibrium melting during metamorphism

  • Chapter
High-temperature Metamorphism and Crustal Anatexis

Part of the book series: The Mineralogical Society Series ((MIBS,volume 2))

Abstract

In numerous studies of partial melting, attention has been focused primarily on topics such as equilibrium phase relations, trace element partitioning, and the textural relations between liquid and crystalline phases in partially molten aggregates. In contrast, the rate of melting in the crust and mantle has received little or no attention. An evaluation of melting rates is important for a number of reasons, such as the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, D. R. 1988. Chemical diffusion in intermediate to silicic melts: effects of pressure and fluoridation. EOS, Transactions, American Geophysical Union 69, 511.

    Google Scholar 

  • Beach, A. 1980. Retrogressive metamorphic processes in shear zones with special reference to the Lewisian complex. Journal of Structural Geology 2, 257–63.

    Article  Google Scholar 

  • Bottinga, Y., D. Weill & P. Richet 1982. Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochimica et Cosmochimica Acta 46, 909–19.

    Article  Google Scholar 

  • Brearley, A. J. & D. C. Rubie 1990. Effects of H2O on the disequilibrium breakdown of muscovite + quartz. Submitted to Journal of Petrology.

    Google Scholar 

  • Burnham, C. W. & N. F. Davis 1971. The role of H2O in silicate melts I. P-V-T relations in the system NaAlSi3O8-H2O to 10 kilobars and 1000°C. American Journal of Science 270, 54–79.

    Article  Google Scholar 

  • Busch, W., G. Schneider & K. R. Mehnert 1974. Initial melting at grain boundaries. Part II: Melting in rocks of granodioritic, quartzdioritic and tonalitic composition. Neues Jahrbuch fürMineralogie, Monatshefte, 345–70.

    Google Scholar 

  • Clemens, J. D. 1984. Water contents of silicic to intermediate magmas. Lithos 17, 273–87.

    Article  Google Scholar 

  • Clemens, J. D. & D. Vielzeuf 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287–306.

    Article  Google Scholar 

  • Dell’Angello, L. N. & J. Tullis 1988. Experimental deformation of partially melted granitic aggregates. Journal of Metamorphic Geology 6, 495–515.

    Article  Google Scholar 

  • De Yoreo, J. J., D. R. Lux & C. V. Guidotti 1989. The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. In Evolution ofmetamorphic belts, J. S. Daly, R. A. Cliff & B. W. D. Yardley (eds). Geological Society of London Special Publication, in press.

    Google Scholar 

  • England, P. C. & A. B. Thompson 1984. Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894–928.

    Google Scholar 

  • England, P. C. & A. B. Thompson 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In Collision tectonics, M. P. Coward & A. C. Ries (eds), 83–94. Geological Society of London Special Publication 19.

    Google Scholar 

  • Fisher, G. W. 1973. Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. American Journal of Science 273, 897–924.

    Article  Google Scholar 

  • Fisher, G. W. 1978. Rate laws in metamorphism. Geochimica et Cosmochimica Acta 41, 1035–50.

    Article  Google Scholar 

  • Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In Migmatites, J. R. Ashworth (ed.), 86–144. Glasgow: Blackie.

    Chapter  Google Scholar 

  • Henderson, P., J. Nolan & R. K. Lowry 1986. Cation diffusion in natural silicate melts. Materials Science Forum 7, 257–66.

    Article  Google Scholar 

  • Joesten, R. 1977. Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimicaet Cosmochimica Acta 41, 649–70.

    Article  Google Scholar 

  • Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Migmatites, J. R. Ashworth (ed.), 36–85. Glasgow: Blackie.

    Chapter  Google Scholar 

  • Jurewicz, S. R. & E. B. Watson 1985. The distribution of partial melt in a granitic system: the application of liquid phase sintering theory. Geochimica et Cosmochimica Acta 49, 1109–21.

    Article  Google Scholar 

  • Kerrich, R., T. E. La Tour & L. Willmore 1984. Fluid participation in deep fault zones: evidence from geological, geochemical and 18O/16O relations. Journal of Geophysical Research 89, 4331–43.

    Article  Google Scholar 

  • Lasaga, A. C. 1986. Metamorphic reaction rate laws and development of isograds. Mineralogical Magazine 50, 359–73.

    Article  Google Scholar 

  • Mawer, C. K., D. C. Rubie & A. J. Brearley 1988. A model for rapid melting in crustal shear zones: Implications for mechanisms of melt migration. EOS, Transactions, AmericanGeophysical Union 69, 1411.

    Google Scholar 

  • McKenzie, D. 1985. The extraction of magma from the crust and mantle. Earth and PlanetaryScience Letters 74, 81–91.

    Article  Google Scholar 

  • McLellan, E. L. 1988. Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska. Journal of Metamorphic Geology 6, 517–42.

    Article  Google Scholar 

  • Mehnert, K. R., W. Büsch & G. Schneider 1973. Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. Neues Jahrbuch für Mineralogie, Monatshefte 165–83.

    Google Scholar 

  • van der Molen, I. & M. S. Paterson 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.

    Article  Google Scholar 

  • Prinzhofer, A. & C. J. Allègre 1985. Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters 74, 251–65.

    Article  Google Scholar 

  • Ridley, J. 1985. The effect of reaction enthalpy on the progress of a metamorphic reaction. In Metamorphic reactions: kinetics, textures and deformation. Advances in physical geochemistry, Vol. 4, A. B. Thompson and D. C. Rubie (eds), 80–97. New York: Springer-Verlag.

    Google Scholar 

  • Robie, R. A., B. S. Hemingway & J. R. Fisher 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geological Survey, Bulletin 1452.

    Google Scholar 

  • Rubie, D. C. 1986. The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism. Mineralogical Magazine 50, 399–415.

    Article  Google Scholar 

  • Rubie, D. C. 1989. Role of kinetics in the formation and preservation of eclogites. In Eclogitefacies rocks, D. A. Carswell (ed.). Glasgow: Blackie (in press).

    Google Scholar 

  • Rubie, D. C. & A. J. Brearley 1987. Metastable melting during the breakdown of muscovite + quartz at 1 kbar. Bulletin de Minéralogie 110, 533–49.

    Google Scholar 

  • Rubie, D. C. & A. J. Brearley 1988. The application of non-equilibrium thermodynamics to partial melting and rates of multicomponent diffusion in granitic melts. EOS, Transactions, American Geophysical Union 69, 1475–6.

    Google Scholar 

  • Rubie, D. C. & A. J. Brearley 1990. Kinetics of partial melting of muscovite + quartz and rates of multicomponent diffusion in H2O-saturated granitic liquid at 1 kbar. Submitted to Contributions to Mineralogy and Petrology.

    Google Scholar 

  • Rumble, D., III, J. M. Ferry, T. C. Hoering & A. J. Boucot 1982. Fluid flow during metamorphism at the Beaver Brook fossil locality, New Hampshire. American Journal ofScience 282, 886–919.

    Article  Google Scholar 

  • Smith, G. D. 1985. Numerical solution of partial differential equations: finite difference methods, 3rd edn. Oxford: Oxford University Press.

    Google Scholar 

  • Spence, D. A. & D. L. Turcotte 1985. Magma driven propagation of cracks. Journal ofGeophysical Research 90, 575–80.

    Article  Google Scholar 

  • Thompson, A. B. 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science 282, 1567–95.

    Article  Google Scholar 

  • Thompson, A. B. 1983. Fluid-absent metamorphism. Journal of the Geological Society ofLondon 140, 533–47.

    Article  Google Scholar 

  • Tsuchiyama, A. 1985a. Partial melting kinetics of plagioclase-diopside pairs. Contributions toMineralogy and Petrology 91, 12–23.

    Article  Google Scholar 

  • Tsuchiyama, A. 1985b. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and the origin of dusty plagioclase in andesites. Contributions toMineralogy and Petrology 89, 1–16.

    Article  Google Scholar 

  • Tsuchiyama, A. 1986. Melting and dissolution kinetics: application to partial melting and dissolution of xenoliths. Journal of Geophysical Research 91, 9395–406.

    Article  Google Scholar 

  • Tsuchiyama, A. & E. Takahashi 1983. Melting kinetics of a plagioclase feldspar. Contributionsto Mineralogy and Petrology 84, 345–54.

    Article  Google Scholar 

  • Turcotte, D. L., S. H. Emerman & D. A. Spence 1987. Mechanics of dyke injection. In Maficdyke swarms, H. C. Halls & W. F. Fahrig (eds), 25–9. Geological Association of Canada Special Paper 34.

    Google Scholar 

  • Vielzeuf, D. & J. R. Holloway 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contributions to Mineralogy and Petrology 98, 257–76.

    Article  Google Scholar 

  • Waff, H. S. & J. R. Bulau 1979. Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research 84, 6109–14.

    Article  Google Scholar 

  • Walther, J. V. & B. J. Wood 1984. Rate and mechanism in prograde metamorphism. Contributions to Mineralogy and Petrology 88, 246–59.

    Article  Google Scholar 

  • Wayte, G. J., R. H. Worden, D. C. Rubie & G. T. R. Droop 1989. A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid. Contributions to Mineralogy and Petrology 101, 426–37.

    Article  Google Scholar 

  • Wickham, S. M. 1987. The segregation and enplacement of granitic magmas. Journal of theGeological Society of London 144, 281–97.

    Article  Google Scholar 

  • Wickham, S. M. & H. P. Taylor 1985. Stable isotopic evidence for large scale sea water infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contributionsto Mineralogy and Petrology 91, 122–37.

    Article  Google Scholar 

  • Wyllie, P. J. 1977. Crustal anatexis: an experimental review. Tectonophysics 43, 41–71.

    Article  Google Scholar 

  • Yardley, B. W. D. & E. Baltatzis 1985. Retrogression of staurolite schists and the sources of infiltrating fluids during metamorphism. Contributions to Mineralogy and Petrology 89, 59–68.

    Article  Google Scholar 

  • Zen, E-An 1988. Thermal modelling of stepwise anatexis in a thrust thickened sialic crust. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 223–36.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 J.R. Ashworth, M. Brown & contributors

About this chapter

Cite this chapter

Rubie, D.C., Brearley, A.J. (1990). A model for rates of disequilibrium melting during metamorphism. In: Ashworth, J.R., Brown, M. (eds) High-temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3929-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3929-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3931-9

  • Online ISBN: 978-94-015-3929-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics