Skip to main content

Thermodynamic Measurement on the Melting of a Two-Dimensional Electron Solid

  • Chapter
  • 372 Accesses

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 19))

Abstract

The solid-liquid phase transition in two dimensions has proved to be a less simple problem than was once imagined. Even the simplest example of particles in a uniform two-dimensional (2D) space with repulsive power-law interaction is argued to show different melting behavior according to the relative energies of the defects involved. The first and attractively simple idea proposed by Kosterlitz and Thouless1 was that such systems might melt because of the basic instability of a solid to the destruction of rigidity which accompanies the thermodynamic dissociation of dislocation pairs. But this instability only sets an upper bound to the temperature at which a solid may exist. For example, Chui2 pointed out that it is possible for dislocations in the solid to group themselves into grain boundaries, in which case the melting can occur at lower temperature and become of first order. Density-wave theories3 also suggest preempting of the dislocation instability, again with the first-order behavior of the thermodynamic potential.

† Article reprinted from Phys. Rev. Lett 53, 588 (1984)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973);

    Article  ADS  Google Scholar 

  2. D.R. Nelson, and B.I. Halperin, Phys. Rev. B 19, 2457 (1979);

    Article  ADS  Google Scholar 

  3. A.P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  4. S.T. Chui, Phys. Rev. Lett. 48, 933 (1982);

    Article  ADS  Google Scholar 

  5. Y. Saito, Phys. Rev. B 26, 6239 (1982).

    Article  ADS  Google Scholar 

  6. T.V. Ramakrishnan, Phys. Rev. Lett. 48, 541 (1982).

    Article  ADS  Google Scholar 

  7. J. Tobochnik and G.V. Chester, Phys. Rev. B 25, 6778 (1982);

    Article  ADS  Google Scholar 

  8. S.W. Kock and F.F. Abraham, Phys. Rev. B 27, 2964 (1983);

    Article  ADS  Google Scholar 

  9. A.F. Bakker, C. Bruin, and H.J. Hilhorst, Phys. Rev. Lett. 52, 449 (1984), and references therein.

    Article  ADS  Google Scholar 

  10. For example: Continuous: P.A. Heiney, P.W. Stephens, R.J. Birgenau, P.M. Horn, and D.E. Moncton, Phys. Rev. B 28, 6416 (1983);

    Article  ADS  Google Scholar 

  11. T.F. Rosenbaum, S.E.Naglar, P.M. Horn, and Roy Clarke, Phys. Rev. Lett. 50, 1971 (1983);

    Article  Google Scholar 

  12. H.K. Kim, Q.A. Zhang, and M.H.W. Chang, Phys. Rev. Lett. 56, 1579 (1986).

    Article  ADS  Google Scholar 

  13. First order: S.B. Hurlbut and J.G. Dash, Phys. Rev. Lett. 53, 1931 (1984).

    Article  ADS  Google Scholar 

  14. C.C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  ADS  Google Scholar 

  15. G. Deville, A. Valdes, E.Y. Andrei, and F.I.B. Williams, Phys. Rev. Lett. 53, 588 (1984);

    Article  ADS  Google Scholar 

  16. F. Gallet, G. Deville, A. Valdes, and F.I.B. Williams, Phys. Rev. Lett. 49, 212 (1982).

    Article  ADS  Google Scholar 

  17. D.C. Glattli, E.Y. Andrei, G. Deville, J. Potrenaud, and F.I.B. Williams, Phys. Rev. Lett. 54, 1710 (1985).

    Article  ADS  Google Scholar 

  18. D.S. Fisher, B.I. Halperin, and P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979).

    Article  ADS  Google Scholar 

  19. L. Bonsall and A.A. Maradudin, Phys. Rev. B 15, 1959 (1977).

    Article  ADS  Google Scholar 

  20. D.S. Fisher, B.I. Halperin, and R. Morf, Phys. Rev. B 20 4692 (1979).

    Article  ADS  Google Scholar 

  21. R.C. Gann, S. Chakravarty, and G.V. Chester, Phys. Rev. B 20, 326 (1979);

    Article  ADS  Google Scholar 

  22. R.H. Morf, Phys. Rev. lett. 43, 931 (1979);

    Article  ADS  Google Scholar 

  23. R.K. Kalia, P. Vashishta, and S.W. de Leeuw, Phys. Rev. B 23, 2794 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Glattli, D.C., Andrei, E.Y., Williams, F.I.B. (1997). Thermodynamic Measurement on the Melting of a Two-Dimensional Electron Solid. In: Andrei, E.Y. (eds) Two-Dimensional Electron Systems. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1286-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1286-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4907-0

  • Online ISBN: 978-94-015-1286-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics