Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1026 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baiocchi, C., Gastaldi, F., and Tomarelli, F.: ‘Some existence results on noncoercive variational inequalities’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 13 (1986), 617–659.

    MathSciNet  MATH  Google Scholar 

  2. Barbu, V.: Optimal control of variational inequalities, Vol. 100 of Res. Notes Math., Pitman, 1984.

    Google Scholar 

  3. Brézis, H.: ‘Problèmes unilatéraux’, J. Math. Pures Appl. 51 (1972), 1–168.

    MathSciNet  Google Scholar 

  4. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland&Amer. Elsevier, 1973.

    MATH  Google Scholar 

  5. Duvaut, G., and Lions, J.L.: Les Inéquations en Mécanique et en Physique, Dunod, 1972.

    MATH  Google Scholar 

  6. Fichera, G.: ‘Problemi Elastostatici con Vincoli Unilaterali, il Problema di Signorini con Ambigue Condizioni al Contorno’, Mem. Accad. Naz. Lincei, VIII 7 (1964), 91–140.

    MathSciNet  MATH  Google Scholar 

  7. Glowinski, R., Lions, J.L., and Trémoliéres, R.: Analyse numérique des inéquations variationnelles, Dunod, 1976.

    MATH  Google Scholar 

  8. Goeleven, D.: Noncoercive variational problems and related results, Vol. 357 of Res. Notes Math. Sci., Longman, 1996.

    MATH  Google Scholar 

  9. Haslinger, J., Hlavacek, I., and Necas, J.: ‘Numerical methods for unilateral problems’, in P.G. Giarlet and J.L. Lions (eds.): Solid Mechanics, Vol. IV of Handbook Numer.Anal., Elsevier, 1996, pp. 313–477.

    Google Scholar 

  10. Le, V.K., and Schmitt, K.: Global bifurcation in variationalinequalities, Springer, 1997.

    MATH  Google Scholar 

  11. Lions, J.L., and Stampacchia, G.: ‘Variational inequalities’, Commun. Pure Appl. Math. XX (1967), 493–519.

    Article  MathSciNet  Google Scholar 

  12. Moreau, J.J.: Fonctionnelles convexes. Sém. sur les Équations aux Dérivées Partielles, Collége de France, 1967.

    Google Scholar 

  13. Panagiotopoulos, P.D.: Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhäuser, 1985.

    Book  MATH  Google Scholar 

  14. Begle, E.G.: ‘The Vietoris mappings theorem for bicompact spaces’, Ann. of Math. 51, no. 2 (1950), 534–550.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisovich, Yu.G.: ‘A modern appoach to the theory of topological characteristics of nonlinear operators II’: Global analysis: Studies and Applications IV, Vol. 1453 of Lecture Notes Math., Springer, 1990, pp. 21–49.

    Google Scholar 

  16. Borisovich, Yu.G., Bliznyakov, N.M., Fomenko, T.N., and Izrailevich, Y.A.: Introduction to differential and algebraic topology, Kluwer Acad. Publ., 1995.

    MATH  Google Scholar 

  17. Borisovich, Yu.G., Gelman, B.D., Myshkis, A.D., and Obukhovskii, V.V.: ‘Topological methods in the fixed-point theory of multi-valued maps’, Russian Math. Surveys 35, no. 1 (1980), 65–143. (Translated from the Russian.)

    Article  MathSciNet  Google Scholar 

  18. Borisovich, Yu.G., Gelman, B.D., Myshkis, A.D., and Obukhovskii, V.V.: ‘Multivalued mappings’, J. Soviet Math. 24 (1984), 719–791. (Translated from the Russian.)

    Article  MATH  Google Scholar 

  19. Borisovich, Yu.G., Gelman, B.D., and Obukhovskii, V.V.: ‘Of some topological invariants of set-valued maps with nonconvex images’, Proc. Sem. Functional Analysis, Voronezh State Univ. 12 (1969), 85–95.

    Google Scholar 

  20. Bouvgin, D.G.: ‘Cones and Vietoris-Begle type theorems’, Trans. Amer. Math. Soc. 174 (1972), 155–183.

    Article  MathSciNet  Google Scholar 

  21. Eilenberg, S., and Montgomery, D.: ‘Fixed point theorems for multi-valued transformations’, Amer. J. Math. 68 (1946), 214–222.

    Article  MathSciNet  MATH  Google Scholar 

  22. Eilenberg, S., and Steenrod, N.: Foundations of algebraic topology, Princeton Univ. Press, 1952.

    MATH  Google Scholar 

  23. Górniewicz, L.: ‘On non-acyclic multi-valued mappings of subsets of Euclidean spaces’, Bull. Acad. Polon. Sci. 20, no. 5 (1972), 379–385.

    MATH  Google Scholar 

  24. Górniewicz, L.: ‘Homological methods in fixed-point theory of multi-valued maps’, Dissert. Math. CXXIX (1976), 1–71.

    Google Scholar 

  25. Granas, A., and Jaworowski, J.W.: ‘Some theorems on multi-valued maps of subsets of the Euclidean space’, Bull. Acad. Polon. Sci. 7, no. 5 (1959), 277–283.

    MathSciNet  MATH  Google Scholar 

  26. Sklyarenko, E.G.: ‘Of some applications of theory of bundles in general topology’, Uspekhi Mat. Nauk 19, no. 6 (1964), 47–70. (In Russian.)

    MathSciNet  MATH  Google Scholar 

  27. Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.

    MATH  Google Scholar 

  28. Antosik, P., and Swartz, C.: Matrix methods in analysis, Vol. 1113 of Lecture Notes Math., Springer, 1985.

    MATH  Google Scholar 

  29. Dunford, N., and Schwartz, J.T.: Linear operators, PartI, Interscience, 1958.

    Google Scholar 

  30. Hahn, H.: ‘Über Folgen linearer Operationen’, Monatsh.Math. Physik 32 (1922), 3–88.

    Article  MATH  Google Scholar 

  31. Pap, E.: Null-additive set functions, Kluwer Acad. Publ.&Ister Sci., 1995.

    MATH  Google Scholar 

  32. Phillips, R.S.: ‘Integration in a convex linear topological space’, Trans. Amer. Math. Soc. 47 (1940), 114–145.

    Article  MathSciNet  Google Scholar 

  33. Rickart, C.E.: ‘Integration in a convex linear topological space’, Trans. Amer. Math. Soc. 52 (1942), 498–521.

    Article  MathSciNet  MATH  Google Scholar 

  34. Saks, S.: ‘Addition to the note on some functionals’, Trans. Amer. Math. Soc. 35 (1933), 967–974.

    Google Scholar 

  35. Vitali, G.: ‘Sull’ integrazione per serie’, Rend. Circ. Mat.Palermo 23 (1907), 137–155.

    Article  MATH  Google Scholar 

  36. Behzad, M.: ‘Graphs and their chromatic numbers’, Doctoral Thesis Michigan State Univ. (1965).

    Google Scholar 

  37. Beineke, L.W.: ‘Derived graphs and digraphs’: Beiträge zur Graphentheorie, Teubner, 1968, pp. 17–33.

    Google Scholar 

  38. Chetwynd, A.G., and Hilton, A.J.W.: ‘1-factorizing regular graphs of high degree: an improved bound’, Discrete Math. 75 (1989), 103–112.

    Article  MathSciNet  MATH  Google Scholar 

  39. Chew, K.H.: ‘Total chromatic number of graphs of high maximum degree’, J. Combin. Math. Combin. Comput. 18 (1995), 245–254.

    MathSciNet  MATH  Google Scholar 

  40. Chew, K.H.: ‘On Vizing’s theorem, adjacency lemma and fan argument generalized to multigraphs’, Discrete Math. 171 (1997), 283–286.

    Article  MathSciNet  MATH  Google Scholar 

  41. Choudom, S.A.: ‘Chromatic bound for a class of graphs’, Quart. J. Math. 28 (1977), 257–270.

    Article  Google Scholar 

  42. Erdös, P., and Wilson, R.J.: ‘On the chromatic index of almost all graphs’, J. Combin. Th. 23 B (1977), 255–257.

    Article  Google Scholar 

  43. Galvin, F.: ‘The list chromatic index of a bipartite multi-graph’, J. Combin. Th. B 68 (1995), 153–158.

    Article  Google Scholar 

  44. Goldberg, M.K.: ‘Edge-coloring of multigraphs: recoloring technique’, J. Graph Theory 8 (1984), 123–137.

    Article  MathSciNet  MATH  Google Scholar 

  45. Hilton, A.J.W., and Hind, H.R.: ‘The total chromatic number of graphs having large maximum degree’, Discrete Math. 117 (1993), 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  46. Holyer, I.: ‘The NP-completeness of edge-coloring’, SIAM J. Comput. 10 (1981), 718–720.

    Article  MathSciNet  MATH  Google Scholar 

  47. König, D.: ‘Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre’, Math. Ann. 77 (1916), 453–465.

    Article  MathSciNet  MATH  Google Scholar 

  48. Kostochka, A.V.: ‘List edge chromatic number of graphs with large girth’, Discrete Math. 101 (1992), 189–201.

    Article  MathSciNet  MATH  Google Scholar 

  49. Molloy, M., and Reed, B.: ‘A bound on the total chromatic number’, Combinatorica 18 (1998), 241–280.

    Article  MathSciNet  MATH  Google Scholar 

  50. Niessen, T., and Volkmann, L.: ‘Class 1 conditions depending on the minimum degree and the number of vertices of maximum degree’, J. Graph Theory 14 (1990), 225–246.

    Article  MathSciNet  MATH  Google Scholar 

  51. Randerath, H.: ‘The Vizing bound for the chromatic number based on forbidden pairs’, Doctoral Thesis RWTH Aachen (1998).

    Google Scholar 

  52. Shannon, C.E.: ‘A theorem on coloring the lines of a network’, J. Math. Phys. 28 (1949), 148–151.

    MathSciNet  MATH  Google Scholar 

  53. Tait, P.G.: ‘On the colouring of maps’, Proc. R. Soc. Edinburgh 10 (1880), 501–503

    MATH  Google Scholar 

  54. Tait, P.G.: ‘On the colouring of maps’, Proc. R. Soc. Edinburgh 10 (1880), 729.

    MATH  Google Scholar 

  55. Vizing, V.G.: ‘On an estimate of the chromatic class of a p-graph’, Diskret. Anal. 3 (1964), 25–30. (In Russian.)

    MathSciNet  Google Scholar 

  56. Vizing, V.G.: ‘Critical graphs with a given chromatic class’, Diskret. Anal. 5 (1965), 9–17. (In Russian.)

    MathSciNet  MATH  Google Scholar 

  57. Vizing, V.G.: ‘Vertex colouring with given colours’, Diskret. Anal. 29 (1976), 3–10. (In Russian.)

    MathSciNet  MATH  Google Scholar 

  58. Volkmann, L.: Fundamente der Graphentheorie, Springer, 1996.

    Book  MATH  Google Scholar 

  59. Yap, H.P.: Total colourings of graphs, Vol. 1623 of Lecture Notes Math., Springer, 1996.

    MATH  Google Scholar 

  60. Carlitz, L.: ‘A degenerate Staudt-Clausen theorem’, Arch. Math. Phys. 7 (1956), 28–33.

    Article  MATH  Google Scholar 

  61. Carlitz, L.: ‘A note on the Staudt-Clausen theorem’, Amer. Math. Monthly 64 (1957), 19–21.

    Article  MATH  Google Scholar 

  62. Carlitz, L.: ‘Arithmetic properties of generalized Bernoulli numbers’, J. Reine Angew. Math. 202 (1959), 174–182.

    MathSciNet  MATH  Google Scholar 

  63. Clarke, F.: ‘The universal von Staudt theorems’, Trans. Amer. Math. Soc. 315 (1989), 591–603.

    Article  MathSciNet  MATH  Google Scholar 

  64. Clarke, F., and Slavutskii, I.Sh.: ‘The integrality of the values of Bernoulli polynomials and of generalised Bernoulli numbers’, Bull. London Math. Soc. 29 (1997), 22–24.

    Article  MathSciNet  Google Scholar 

  65. Clausen, Th.: ‘Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen’, Astr. Nachr. 17 (1840), 351–352.

    Google Scholar 

  66. Girstmair, K.: ‘Ein v. Staudt-Clausenscher Satz für periodische Bernoulli-Zahlen’, Monatsh. Math. 104 (1987), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  67. Goss, D.: ‘Von Staudt for F q (T)’, Duke Math. J. 45 (1978), 887–910.

    Article  MathSciNet  Google Scholar 

  68. Hermite, Ch.: ‘Extrait d’une lettre à M. Borchardt (sur les nombres de Bernoulli)’, J. Reine Angew. Math. 81 (1876), 93–95.

    Google Scholar 

  69. Katz, N.: ‘The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers’, Math. Ann. 216 (1975), 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  70. Lipschitz, R.: ‘Sur la représentation asymptotique de la valeur numérique ou de la partie entière des nombres de Bernoulli’, Bull. Sci. Math. (2) 10 (1886), 135–144.

    Google Scholar 

  71. Rado, R.: ‘A note on Bernoullian numbers’, J. London Math.Soc. 9 (1934), 88–90.

    Article  Google Scholar 

  72. Staudt, K.G.C. von: ‘Beweis eines Lehrsatzes die Bernoulli’schen Zahlen betreffend’, J. Reine Angew. Math. 21 (1840), 372–374.

    Article  MATH  Google Scholar 

  73. Staudt, K.G.C. von: De Numeris Bernoullianis, Erlangen, 1845.

    Google Scholar 

  74. Stern, M.A.: ‘Über eine Eigenschaft der Bernoulli’sehen Zahlen’, J. Reine Angew. Math. 81 (1876), 290–294.

    Google Scholar 

  75. Sun, Zhi-Hong: ‘Congruences for Bernoulli numbers and Bernoulli polynomials’, Discrete Math. 163 (1997), 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  76. Vandiver, H.S.: ‘Simple explicit expressions for generalized Bernoulli numbers of the first order’, Duke Math. J. 8 (1941), 575–584.

    Article  MathSciNet  Google Scholar 

  77. Washington, L.C.: Introduction to cyclotomic fields, Springer, 1982, Second ed.: 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers and Elliott H. Lieb for “Lieb-Thirring inequalities” and “Thomas-Fermi theory”

About this chapter

Cite this chapter

Hazewinkel, M. (2000). V. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1279-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5378-7

  • Online ISBN: 978-94-015-1279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics