Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1038 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.L., and Ibragimov, N.H.: Lie-Bäcklund transformations in applications, SIAM (Soc. Industrial Applied Math.), 1979.

    MATH  Google Scholar 

  2. Rogers, C, and Shadwick, W.F.: Bäcklund transformations and their applications, Acad., 1982.

    MATH  Google Scholar 

  3. Steeb, W.-H.: Continuous symmetries, Lie algebras, differential equations and computer algebra, World Sci., 1996.

    MATH  Google Scholar 

  4. Steeb, W.-H.: Problems and solutions in theoretical and mathematical physics: Advanced problems, Vol. II, World Sci., 1996.

    MATH  Google Scholar 

  5. Steeb, W.-H., and Euler, N.: Nonlinear evolution equations and Painlevé test, World Sci., 1988.

    MATH  Google Scholar 

  6. Arcones, M.A.: ‘The Bahadur-Kiefer representation for U-quantiles’, Ann. Statist. 24 (1996), 1400–1422.

    MathSciNet  MATH  Google Scholar 

  7. Arcones, M.A.: ‘The Bahadur-Kiefer representation of the two-dimensional spatial medians’, Ann. Inst. Statist. Math. 50 (1998), 71–86.

    MathSciNet  MATH  Google Scholar 

  8. Bahadur, R.R.: ‘A note on quantiles in large samples’, Ann. Math. Stat. 37 (1966), 577–580.

    MathSciNet  MATH  Google Scholar 

  9. Beirlant, J., Deheuvels, P., Einmahl, J.H.J., and Mason, D.M.: ‘Bahadur-Kiefer theorems for uniform spacings processes’, Theory Probab. Appl. 36 (1992), 647–669.

    MathSciNet  Google Scholar 

  10. Beirlant, J., and Einmahl, J.H.J.: ‘Bahadur-Kiefer theorems for the product-limit process’, J. Multivariate Anal. 35 (1990), 276–294.

    MathSciNet  MATH  Google Scholar 

  11. Deheuvels, P.: ‘Pointwise Bahadur-Kiefer-type theorems II’: Nonparametric statistics and related topics (Ottawa, 1991), North-Holland, 1992, pp. 331–345.

    Google Scholar 

  12. Deheuvels, P., and Mason, D.M.: ‘Bahadur-Kiefer-type processes’, Ann. of Probab. 18 (1990), 669–697.

    MathSciNet  MATH  Google Scholar 

  13. Einmahl, J.H.J.: ‘A short and elementary proof of the main Bahadur-Kiefer theorem’, Ann. of Probab. 24 (1996), 526–531.

    MathSciNet  MATH  Google Scholar 

  14. He, X., and Shao, Q.-M.: ‘A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs’, Ann. Statist. 24 (1996), 2608–2630.

    MathSciNet  MATH  Google Scholar 

  15. Hesse, C.H.: ‘A Bahadur-Kiefer type representation for a large class of stationary, possibly infinite variance, linear processes’, Ann. Statist. 18 (1990), 1188–1202.

    MathSciNet  MATH  Google Scholar 

  16. Kiefer, J.C.: ‘On Bahadur’s representation of sample quantiles’, Ann. Math. Stat.38 (1967), 1323–1342.

    MathSciNet  MATH  Google Scholar 

  17. Kiefer, J.C.: ‘Deviations between the sample quantile process and the sample df, in M. Puri (ed.): Non-parametric Techniques in Statistical Inference, Cambridge Univ. Press, 1970, pp. 299–319.

    Google Scholar 

  18. Shorack, G.R., and Wellner, J.A.: Empirical processes with applications to statistics, Wiley, 1986.

    MATH  Google Scholar 

  19. Balian, R.: ‘Un principe d’incertitude fort en théorie du signal ou en mécanique quantique’, C.R. Acad. Sci. Paris 292 (1981), 1357–1362.

    MathSciNet  Google Scholar 

  20. Battle, G.: ‘Heisenberg proof of the Balian-Low theorem’, Lett. Math. Phys. 15 (1988), 175–177.

    MathSciNet  Google Scholar 

  21. Battle, G.: ‘Phase space localization theorem for on-delettes’, J. Math. Phys. 30 (1989), 2195–2196.

    MathSciNet  MATH  Google Scholar 

  22. Benedetto, J., Heil, C., and Walnut, D.: ‘Differentiation and the Balian-Low Theorem’, J. Fourier Anal. Appl. 1 (1995), 355–402.

    MathSciNet  MATH  Google Scholar 

  23. Daubechies, I.: ‘The wavelet transform, time-frequency localization and signal analysis’, IEEE Trans. Inform. Th. 39 (1990), 961–1005.

    MathSciNet  Google Scholar 

  24. Daubechies, I., and Janssen, A.J.E.M.: ‘Two theorems on lattice expansions’, IEEE Trans. Inform. Th. 39 (1993), 3–6.

    MathSciNet  MATH  Google Scholar 

  25. Feichtinger, H., and Gröchenig, K.: ‘Gabor frames and time—frequency distributions’, J. Funct. Anal. 146 (1997), 464–495.

    MathSciNet  MATH  Google Scholar 

  26. Low, F.: ‘Complete sets of wave packets’, in C. Detar et al. (eds.): A Passion for Physics: Essays in Honor of Geoffrey Chew, World Sci., 1985, pp. 17–22.

    Google Scholar 

  27. Ramanathan, J., and Steger, T.: ‘Incompleteness of Sparse Coherent States’, Appl. Comput. Harm. Anal. 2 (1995), 148–153.

    MathSciNet  MATH  Google Scholar 

  28. Rieffel, M.: ‘Von Neumann algebras associated with pairs of lattices in Lie groups’, Math. Ann. 257 (1981), 403–418.

    MathSciNet  MATH  Google Scholar 

  29. Abramovich, Y.A., and Wojtaszczyk, P.: ‘On the uniqueness of order in the spaces p and L P [0,1]’, Mat. Zametki 18 (1975), 313–325.

    MathSciNet  Google Scholar 

  30. Aliprantis, C.D., and Burkinshaw, O.: Positive operators, Acad. Press, 1995.

    Google Scholar 

  31. Alspach, D., Enflo, P., and Odell, E.: ‘On the structure of separable p spaces, (1 < p < ∞)’, Studia Math. 60 (1977), 79–90.

    MathSciNet  MATH  Google Scholar 

  32. Bennett, C., and Sharpley, R.: Interpolation of operators, Acad. Press, 1988.

    MATH  Google Scholar 

  33. Calderón, A.P.: ‘Intermediate spaces and interpolation, the complex method’, Studia Math. 24 (1964), 113–190.

    MathSciNet  MATH  Google Scholar 

  34. Casazza, P.G., Kalton, N.J., Kutzarova, D., and Mastylo, M.: ‘Complex interpolation and comple-mentably minimal spaces’, in N. Kalton, E. Saab, and S. Montgomery-Smith (eds.): Interaction between Functional Analysis, Harmonic Analysis, and Probability (Proc. Conf. Univ. Missouri 1994), Vol. 175 of Lecture Notes Pure Appl. Math., M. Dekker, 1996, pp. 135–143.

    Google Scholar 

  35. Johnson, W.B., B. Maurey, V. Schechtmannn, and Tzafriri, L.: ‘Symmetric structures in Banach spaces’, Memoirs Amer. Math. Soc. 217 (1979).

    Google Scholar 

  36. Kalton, N.J.: ‘Lattice structures on Banach spaces’, Memoirs Amer. Math. Soc. 493 (1993).

    Google Scholar 

  37. Kalton, N.J.: ‘The basic sequence problem’, Studia Math. 116 (1995), 167–187.

    MathSciNet  MATH  Google Scholar 

  38. Kantorovich, L.V., and Akilov, G.P.: Functional analysis, Pergamon, 1998.

    Google Scholar 

  39. Krein, S.G., Petunin, Yu.I., and Semenov, E.M.: Interpolation of linear operators, Amer. Math. Soc, 1982. (Translated from the Russian.)

    Google Scholar 

  40. Lindenstrauss, J., and Tzafriri, L.: Classical Banach spaces: Function spaces, Vol. 2, Springer, 1979.

    MATH  Google Scholar 

  41. Lozanovskiĭ, G.A.: ‘On some Banach lattices’, Sib. Math. J. 10 (1969), 419–430.

    Google Scholar 

  42. Luxemburg, W.A.J., and Zaanen, A.C.: Riesz spaces, Vol. 2, North-Holland, 1983.

    Google Scholar 

  43. Odell, E., and Schlumprecht, T.: ‘The distortion problem’, Acta Math. 173 (1994), 258–281.

    MathSciNet  Google Scholar 

  44. Pisier, G.: ‘Some applications of the complex interpolation method to Banach lattices’, J. Anal. Math. 35 (1979), 264–281.

    MathSciNet  MATH  Google Scholar 

  45. Aron, R., Cole, B., and Gamelin, T.: ‘Spectra of algebras of analytic functions on a Banach space’, J. Reine Angew. Math. 415 (1991), 51–93.

    MathSciNet  MATH  Google Scholar 

  46. Aron, R., Galindo, P., Garcia, D., and Maestre, M.: ‘Regularity and algebras of analytic functions in infinite dimensions’, Trans. Amer. Math. Soc. 384, no. 2 (1996), 543–559.

    MathSciNet  Google Scholar 

  47. Dineen, S.: Complex analysis in localy convex spaces, North-Holland, 1981.

    Google Scholar 

  48. Dineen, S.: Complex analysis on infinite dimensional spaces, Springer, 1999.

    MATH  Google Scholar 

  49. Farmer, J.: ‘Fibers over the sphere of a uniformly convex Banach space’, Michigan Math. J. 45, no. 2 (1998), 211–226.

    MathSciNet  MATH  Google Scholar 

  50. Gamelin, T.: ‘Analytic functions on Banach spaces’: Complex Potential Theory (Montreal 1993), Vol. 439 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., 1994, pp. 187–233.

    Google Scholar 

  51. Mujica, J.: Complex analysis in Banach spaces, North-Holland, 1986.

    MATH  Google Scholar 

  52. Stensones, B.: ‘A proof of the Michael conjecture’, preprint (1999).

    Google Scholar 

  53. Bauer, K.W.: ‘Über eine der Differentialgleichung (math = 0 zugeordnete Funktionentheorie’, Bonner Math. Schriften 23 (1965).

    Google Scholar 

  54. Bauer, K.W.: ‘Über die Lösungen der elliptischen Differentialgleichung (math), J. Reine Angew. Math. 221 (1966), 48–84;

    Google Scholar 

  55. Bauer, K.W.: ‘Über die Lösungen der elliptischen Differentialgleichung (math), J. Reine Angew. Math. 221 (1966), 176–196.

    Google Scholar 

  56. Bauer, K.W., and Ruscheweyh, S.: Differential operators for partial differential equations and function theoretic applications, Vol. 791 of Lecture Notes Math., Springer, 1980.

    MATH  Google Scholar 

  57. Berglez, P.: ‘Darstellung und funktionentheoretische Eigenschaften von Lösungen partieller Differentialgleichungen’, Habilitationsschrift Techn. Univ. Graz (1988).

    Google Scholar 

  58. Heersink, R.: ‘Über Lösungsdarstellungen und funktionentheoretische Methoden bei elliptischen Differentialgleichungen’, Ber. Math. Statist. Sektion Forschungszentrum Graz 67 (1976).

    Google Scholar 

  59. Heersink, R.: ‘Zur Charakterisierung spezieller Lösungsdarstellungen für elliptische Gleichungen’, Österr. Akad. d. Wiss., Abt.II 192, no. 4–7 (1983), 267–293.

    MathSciNet  MATH  Google Scholar 

  60. Kracht, M., and Kreyszig, E.: Methods of complex analysis in partial differential equations with applications, Wiley, 1988.

    MATH  Google Scholar 

  61. Peschl, E.: ‘Les invariants différentiels non holomorphes et leur role dans la théorie de fonctions’, Rend. Sem. Mat. Messina 1 (1955), 100–108.

    MathSciNet  Google Scholar 

  62. Peschl, E.: ‘Über die Verwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Typus’, Ann. Acad. Sci. Fenn., Ser. A I Math. 336, no. 6 (1963).

    Google Scholar 

  63. Alfsen, E.M.: Compact convex sets and boundary integrals, Springer, 1971.

    MATH  Google Scholar 

  64. Altomare, F., and Campiti, M.: Korovkin type approximation theory and its applications, W. de Gruyter, 1994.

    MATH  Google Scholar 

  65. Bauer, H.: ‘Schilowsche Rand und Dirichletsches Problem’, Ann. Inst. Fourier 11 (1961), 89–136.

    MATH  Google Scholar 

  66. Borgwardt, K.H.: The simplex method : A probabilistic approach, Springer, 1987.

    Google Scholar 

  67. Calvin, J.M.: ‘Average performance of a class of adaptive algorithms for global optimization’, Ann. Appl. Probab. 7 (1997), 711–730.

    MathSciNet  MATH  Google Scholar 

  68. Diaconis, P.: ‘Bayesian numerical analysis’, in S.S. Gupta and J.O. Berger (eds.): Statistical Decision Theory and Related Topics IV, Vol. 1, Springer, 1988, pp. 163–175.

    Google Scholar 

  69. Kadane, J.B., and Wasilkowski, G.W.: ‘Average case e-complexity in computer science: a Bayesian view’, in J.M. Bernardo (ed.): Bayesian Statistics, North-Holland, 1988, pp. 361–374.

    Google Scholar 

  70. Novak, E., Ritter, K., and Wozniakowski, H.: ‘Average case optimality of a hybrid secant-bisection method’, Math. Comp. 64 (1995), 1517–1539.

    MathSciNet  MATH  Google Scholar 

  71. Ritter, K.: Average case analysis of numerical problems, Lecture Notes Math. Springer, 2000.

    MATH  Google Scholar 

  72. Shub, M., and Smale, S.: ‘Complexity of Bezout’s theorem V: polynomial time’, Theoret. Comput. Sci. 133 (1994), 141–164.

    MathSciNet  MATH  Google Scholar 

  73. Wasilkowski, G.W.: ‘Average case complexity of multivariate integration and function approximation: an overview’, J. Complexity 12 (1996), 257–272.

    MathSciNet  MATH  Google Scholar 

  74. Bazilevich, I.E.: ‘On a class of integrability by quadratures of the equation of Loewner-Kufarev’, Mat. Sb. 37 (1955), 471–476.

    MathSciNet  Google Scholar 

  75. Duren, P.L.: Univalent functions, Vol. 259 of Grundl. Math. Wissenschaft., Springer, 1983.

    Google Scholar 

  76. Eenigenburg, P.J., Miller, S.S., Mocanu, P.T., and Reade, M.O.: ‘On a subclass of Bazilevic functions’, Proc. Amer. Math. Soc. 45 (1974), 88–92.

    MathSciNet  MATH  Google Scholar 

  77. Keogh, F.R., and Miller, S.S.: ‘On the coefficients of Bazilevic functions’, Proc. Amer. Math. Soc. 30 (1971), 492–496.

    MathSciNet  MATH  Google Scholar 

  78. Miller, S.S.: ‘The Hardy class of a Bazilevic function and its derivative’, Proc. Amer. Math. Soc. 30 (1971), 125–132.

    MathSciNet  Google Scholar 

  79. Mocanu, P.T., Reade, M.O., and Zlotkiewicz, E.J.: ‘On Bazilevic functions’, Proc. Amer. Math. Soc. 39 (1973), 173–174.

    MathSciNet  MATH  Google Scholar 

  80. Nunokawa, M.: ‘On the Bazilevic analytic functions’, Sci. Rep. Fac. Edu. Gunma Univ. 21 (1972), 9–13.

    MathSciNet  Google Scholar 

  81. Pommerenke, Ch.: Univalent functions, Vanden-hoeck&Ruprecht, 1975.

    MATH  Google Scholar 

  82. Sheil-Small, T.: ‘On Bazilevic functions’, Quart. J. Math. 23 (1972), 135–142.

    MathSciNet  MATH  Google Scholar 

  83. Singh, R.: ‘On Bazilevic functions’, Proc. Amer. Math. Soc. 38 (1973), 261–271.

    MathSciNet  MATH  Google Scholar 

  84. Thomas, D.K.: ‘On Bazilevic functions’, Trans. Amer. Math. Soc. 132 (1968), 353–361.

    MathSciNet  Google Scholar 

  85. Zamorski, J.: ‘On Bazilevic schlicht functions’, Ann. Polon. Math. 12 (1962), 83–90.

    MathSciNet  MATH  Google Scholar 

  86. Cercignani, C., Gerasimenko, V., and Petrina, D.: Many-particle dynamics and kinetic equations, Kluwer Acad. Publ., 1997.

    MATH  Google Scholar 

  87. Cercignani, C., Illner, R., and Pulvirenti, M.: The mathematical theory of dilute gases, Springer, 1994.

    MATH  Google Scholar 

  88. Petrina, D.: Mathematical foundations of quantum statistical mechanics, Kluwer Acad. Publ., 1995.

    Google Scholar 

  89. Petrina, D., Gerasimenko, V., and Malyshev, P.: Mathematical foundations of classical statistical mechanics. Continuous systems, Gordon&Breach, 1989.

    MATH  Google Scholar 

  90. Spohn, H.: Large scale dynamics of interacting particles, Springer, 1991.

    MATH  Google Scholar 

  91. Hale, J.: Theory of functional differential equations, Springer, 1977.

    MATH  Google Scholar 

  92. Samoilenko, A., and Perestyuk, N.: Impulsive differential equations, World Sci., 1995. (Translated from the Russian.)

    MATH  Google Scholar 

  93. Berger, M.: ‘Une borne inférieure pour le volume d’une variété riemannienes en fonction du rayon d’injectivité’, Ann. Inst. Fourier (Grenoble) 30 (1980), 259–265.

    MathSciNet  MATH  Google Scholar 

  94. Chavel, I.: Riemannian geometry: A modem introduction, Cambridge Univ. Press, 1995.

    Google Scholar 

  95. Aleman, A., Richter, S., and Sundberg, C.: ‘Beurling’s theorem for the Bergman space’, Acta Math. 177 (1996), 275–310.

    MathSciNet  MATH  Google Scholar 

  96. Apostol, C., Bercovici, H., Foias, C., and Pearcy, C.: ‘Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra’, J. Funct. Anal. 63 (1985), 369–404.

    MathSciNet  MATH  Google Scholar 

  97. Axler, S.: ‘Bergman spaces and their operators’, in J.B. Conway and B.B. Morrel (eds.): Surveys of Some Recent Results in Operator Theory I, Vol. 171 of Res. Notes Math., Pitman, 1988, p. 1–50.

    Google Scholar 

  98. Axler, S., McCarthy, J., and Sarason, D. (eds.): Holomorphic Spaces, Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  99. Axler, S., and Zheng, D.: ‘Compact operators via the Berezin transform’, Indiana J. Math. 49 (1998), 311.

    Google Scholar 

  100. Bell, S.: The Cauchy transform, potential theory, and con-formal mapping, Studies Adv. Math. CRC, 1992.

    Google Scholar 

  101. Bergman, S.: The kernel function and conformai mapping, Vol. 5 of Math. Surveys, Amer. Math. Soc, 1950.

    Google Scholar 

  102. Carleson, L.: Selected problems on exceptional sets, v. Nostrand, 1967.

    MATH  Google Scholar 

  103. Cowen, C., and MacCluer, B.: Composition operators on spaces of analytic functions, Studies Adv. Math. CRC, 1995.

    MATH  Google Scholar 

  104. Duren, P., Khavinson, D., Shapiro, H., and Sundberg, C.: ‘Invariant subspaces in Bergman spaces and the bihar-monic equation’, Michigan Math. J. 41 (1994), 247–259.

    MathSciNet  MATH  Google Scholar 

  105. Havin, V.P.: ‘Approximation in the mean by analytic functions’, Soviet Math. Dokl. 9 (1968), 245–248.

    Google Scholar 

  106. Hedberg, L.: ‘Non linear potentials and approximation in the mean by analytic functions’, Math. Z. 129 (1972), 299–319.

    MathSciNet  MATH  Google Scholar 

  107. Hedenmalm, H.: ‘A factorization theorem for square area integrable functions’, J. Reine Angew. Math. 422 (1991), 45–68.

    MathSciNet  MATH  Google Scholar 

  108. Hedenmalm, H.: ‘An invariant subspace of the Bergman space having the codimension two property’, J. Reine Angew. Math. 443 (1993), 1–9.

    MathSciNet  MATH  Google Scholar 

  109. Korenblum, B.: ‘An extension of the Nevanlinna theory’, Acta Math. 135 (1975), 187–219.

    MathSciNet  MATH  Google Scholar 

  110. Korenblum, B.: ‘A Beurling type theorem’, Acta Math. 138 (1977), 265–293.

    MathSciNet  MATH  Google Scholar 

  111. Korenblum, B.: ‘Outer functions and cyclic elements in Bergman spaces’, J. Funct. Anal. 115 (1993), 104–118.

    MathSciNet  MATH  Google Scholar 

  112. Li, H., and Luecking, D.: ‘BMO on strongly pseudocon-vex domains: Hankel operators, duality and ∂-estimates’, Trans. Amer. Math. Soc. 346 (1994), 661–691.

    MathSciNet  MATH  Google Scholar 

  113. Seip, K.: ‘Beurling type density theorems in the unit disc’, Invent. Math. 113 (1993), 21–39.

    MathSciNet  MATH  Google Scholar 

  114. Seip, K.: ‘On a theorem of Korenblum’, Ark. Mat. 32 (1994), 237–243.

    MathSciNet  MATH  Google Scholar 

  115. Seip, K.: ‘On Korenblum’s density condition for the zero sets of Ap, α’, J. Anal. Math. 67 (1995), 307–322.

    MathSciNet  MATH  Google Scholar 

  116. Zhu, K.: ‘Operator theory in function spaces’, Pure Appl. Math. 139 (1990).

    Google Scholar 

  117. Berlekamp, E.R.: Algebraic coding theory, McGraw-Hill, 1968.

    MATH  Google Scholar 

  118. Kailath, T.: ‘Encounters with the Berlekamp-Massey algorithm’, in R.E. Blahut, D.J. Costello Jr., U. Maureer, and T. Mittelholzer (eds.): Communications and Cryptography, Two Sides of One Tapestry, Kluwer Acad. Publ., 1994.

    Google Scholar 

  119. Massey, J.L.: ‘Shift register synthesis and BCH decoding’, IEEE Trans. Inform. Th. IT-19 (1969), 122–127.

    MathSciNet  Google Scholar 

  120. McEliece, R.J.: The theory of information and coding, Vol. 3 of Encycl. Math. Appl, Addison-Wesley, 1977.

    MATH  Google Scholar 

  121. Sugiyama, Y., Kasahara, S., Hirasawa, S., and Namekawa, T.: ‘A method for solving key equation for decoding Goppa codes’, Inform. Control 27 (1975), 87–99.

    MathSciNet  MATH  Google Scholar 

  122. Welch, L.R., and Schultz, R.A.: ‘Continued fractions and Berlekamp’s algorithm’, IEEE Trans. Inform. Th. IT-25 (1979), 19–27.

    Google Scholar 

  123. Chaudhuri, A., and Mukerjee, R.: Randomized response, M. Dekker, 1988.

    MATH  Google Scholar 

  124. Ferguson, T.S.: Mathematical statistics: a decision theoretic approach, Acad. Press, 1967.

    MATH  Google Scholar 

  125. Lehmann, E.L.: Theory of point estimation, Wiley, 1983.

    MATH  Google Scholar 

  126. Bernstein, S.N.: ‘Mathematical problems in modern biology’, Science in the Ukraine 1 (1922), 14–19. (In Russian.)

    Google Scholar 

  127. Bernstein, S.N.: ‘Solution of a mathematical problem related to the theory of inheritance’, Uchen. Zap. Nauch. Issl. Kafedr. Ukrain. 1 (1924), 83–115. (In Russian.)

    Google Scholar 

  128. Gonzales, S., Gutiérrez, J.C., and Martinez, C.: ‘The Bernstein problem in dimension 5’, J. Algebra 177 (1995), 676–697.

    MathSciNet  Google Scholar 

  129. Gutiérrez, J.C.: ‘The Bernstein problem in dimension 6’, J. Algebra 185 (1996), 420–439.

    MathSciNet  MATH  Google Scholar 

  130. Hardy, G.H.: ‘Mendelian proportions in a mixed population’, Science 28, no. 706 (1908), 49–50.

    Google Scholar 

  131. Lyubich, Y.I.: ‘Basic concepts and theorems of evolutionary genetics for free populations’, Russian Math. Surveys 26, no. 5 (1971), 51–123.

    MATH  Google Scholar 

  132. Lyubich, Y.I.: ‘Analogues to the Hardy-Weinberg Law’, Genetics 9, no. 10 (1973), 139–144. (In Russian.)

    Google Scholar 

  133. Lyubich, Y.I.: ‘Two-level Bernstein populations’, Math. USSR Sb. 24, no. 1 (1974), 593–615.

    MathSciNet  Google Scholar 

  134. Lyubich, Y.I.: ‘Quasilinear Bernstein populations’, Teor. Funct. Funct. Anal. Appl. 26 (1976), 79–84.

    MATH  Google Scholar 

  135. Lyubich, Y.I.: ‘Proper Bernstein populations’, Probl. Inform. Transmiss. Jan. (1978), 228–235.

    Google Scholar 

  136. Lyubich, Y.I.: ‘A topological approach to a problem in mathematical genetics’, Russian Math. Surveys 34, no. 6 (1979), 60–66.

    MathSciNet  MATH  Google Scholar 

  137. Lyubich, Y.I.: Mathematical structures in population genetics, Springer, 1992.

    MATH  Google Scholar 

  138. Lyubich, Y.I.: ‘A new advance in the Bernstein problem in mathematical genetics’, Preprint Inst. Math. Sci., SUNY Stony Brook 9 (1996), 1–33.

    Google Scholar 

  139. Adams, D.R., and Hedberg, L.I.: Function spaces and potential theory, Springer, 1996.

    Google Scholar 

  140. Triebel, H.: Theory of function spaces II, Birkhäuser, 1992.

    MATH  Google Scholar 

  141. Barwise, J.: ‘Infinitary logic and admissible sets’, Doctoral Diss. Stanford (1967).

    Google Scholar 

  142. Barwise, J.: ‘Infinitary logic and admissible sets’, J. Symbolic Logic 34 (1969), 226–252.

    MathSciNet  MATH  Google Scholar 

  143. Barwise, J., and Feferman, S. (eds.): Model-theoretic logics, Springer, 1985.

    Google Scholar 

  144. Beth, E.W.: ‘On Padoa’s method in the theory of definition’, Indag. Math. 15 (1953), 330–339.

    MathSciNet  Google Scholar 

  145. Craig, W.: ‘Satisfaction for n-th order languages defined in n-th order languages’, J. Symbolic Logic 30 (1965), 13–25.

    MathSciNet  MATH  Google Scholar 

  146. Ebbinghaus, H.-D., and Flum, J.: Finite model theory, Springer, 1995.

    MATH  Google Scholar 

  147. Gostanian, R., and Hrbacek, K.: ‘On the failure of the weak Beth property’, Proc. Amer. Math. Soc. 58 (1976), 245–249.

    MathSciNet  MATH  Google Scholar 

  148. Kolaitis, P.: ‘Implicit definability on finite structures and unambiguous computations’: Proc. 5th IEEE Symp. on Logic in Computer Science, 1990, pp. 168–180.

    Google Scholar 

  149. Lopez-Escobar, E.G.K.: ‘An interpolation theorem for de-numerably long sentences’, Funct. Math. 57 (1965), 253–272.

    MathSciNet  MATH  Google Scholar 

  150. Mekler, A.H., and Shelah, S.: ‘Stationary logic and its friends I’, Notre Dame J. Formal Logic 26 (1985), 129–138.

    MathSciNet  MATH  Google Scholar 

  151. Schütte, K.: ‘Der Interpolationssatz der intuitionistischen Prädikatenlogik’, Math. Ann. 148 (1962), 192–200.

    MathSciNet  MATH  Google Scholar 

  152. Dahlberg, J., and Trubowitz, E.: ‘A remark on two dimensional periodic potentials’, Comment. Math. Helvetici 57 (1982), 130–134.

    MathSciNet  MATH  Google Scholar 

  153. Eastham, M.S. P.: The spectral theory of periodic differential equations, Scottish Acad. Press, 1973.

    MATH  Google Scholar 

  154. Helffer, B., and Mohamed, A.: ‘Asymptotic of the density of states for the Schrödinger operator with periodic electric potential’, Duke Math. J. 92, no. 1 (1998), 1–60.

    MathSciNet  MATH  Google Scholar 

  155. Karpeshina, Y.E.: Perturbation theory for the Schrödinger operator with a periodic potential, Vol. 1663 of Lecture Notes Math., Springer, 1977.

    Google Scholar 

  156. Kuchment, P.: Floquet theory for partial differential equations, Vol. 60 of Oper. Th. Adv. Appl., Birkhäuser, 1993.

    MATH  Google Scholar 

  157. Mohamed, A.: ‘Asymptotic of the density of states for Schrödinger operator with periodic electro-magnetic potential’, J. Math. Phys. 38, no. 8 (1997), 4023–4051.

    MathSciNet  MATH  Google Scholar 

  158. Shubin, M.: ‘The spectral theory and the index of almost periodic coefficients’, Russian Math. Surveys 34, no. 2 (1979), 109–157.

    MathSciNet  MATH  Google Scholar 

  159. Skriganov, M.M.: ‘Proof of the Bethe-Sommerfeld conjecture in dimension two’, Soviet Math. Dokl. 20, no. 5 (1979), 956–959.

    MathSciNet  MATH  Google Scholar 

  160. Skriganov, M.M.: ‘The spectrum band structure of the three dimensional Schrödinger operator with periodic potential’, Invent. Math. 80 (1985), 107–121.

    MathSciNet  MATH  Google Scholar 

  161. Skriganov, M.M.: ‘Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators’, Proc. Steklov Inst. Math., no. 2 (1987).

    Google Scholar 

  162. Sommerfeld, A., and Bethe, H.: Electronentheorie der Metalle, second ed., Handbuch Physik. Springer, 1933.

    Google Scholar 

  163. Abrahamse, M.B., and Douglas, R.G.: ‘A class of subnormal operators related to multiply connected domains’, Adv. Math. 19 (1976), 1–43.

    MathSciNet  Google Scholar 

  164. Ball, J.A., Gohberg, I., and Rodman, L.: Interpolation of rational matrix functions, Vol. 45 of Oper. Th. Adv. Appi, Birkhäuser, 1990.

    MATH  Google Scholar 

  165. Ball, J.A., and Helton, J.W.: ‘A Beurling-Lax theorem for the Lie group U(m, n) which contains most classical interpolation’, J. Operator Th. 9 (1983), 632–658.

    MathSciNet  Google Scholar 

  166. Ball, J.A., and Helton, J.W.: ‘Shift invariant manifolds and nonlinear analytic function theory’, Integral Eq. Operator Th. 11 (1988), 615–725.

    MathSciNet  MATH  Google Scholar 

  167. Bercovici, H.: Operator theory and arithmetic in H , Vol. 26 of Math. Surveys Monogr., Amer. Math. Soc, 1988.

    MATH  Google Scholar 

  168. Beurling, A.: ‘On two problems concerning linear transformations in Hilbert space’, Acta Math. 81 (1949), 239–255.

    MATH  Google Scholar 

  169. Branges, L. De, and Rovnyak, J.: Square summable powerseries, Holt, Rinehart&Winston, 1966.

    MATH  Google Scholar 

  170. Brodskii, M.S.: Triangular and Jordan representations of linear operators, Vol. 32 of Transl. Math. Monogr., Amer. Math. Soc, 1971.

    Google Scholar 

  171. Gohberg, I. (ed.): I. Schur Methods in Operator Theory and Signal Processing, Vol. 18 of Oper. Th. Adv. Appl., Birkhäuser, 1986.

    MATH  Google Scholar 

  172. Gohberg, I. (ed.): Time-Variant Systems and Interpolation, Vol. 56 of Oper. Th. Adv. Appl, Birkhäuser, 1992.

    MATH  Google Scholar 

  173. Halmos, P.R.: ‘Shifts on Hilbert spaces’, J. Reine Angew. Math. 208 (1961), 102–112.

    MathSciNet  MATH  Google Scholar 

  174. Hedenmalm, H.: ‘A factorization theorem for square area-integrable analytic functions’, J. Reine Angew. Math. 422 (1991), 45–68.

    MathSciNet  MATH  Google Scholar 

  175. Helton, J.W.: Operator theory, analytic functions, matrices, and electrical engineering, Vol. 68 of Conf. Board Math. Sci., Amer. Math. Soc, 1987.

    Google Scholar 

  176. Lax, P.D.: ‘Translation invariant subspaces’, Acta Math. 101 (1959), 163–178.

    MathSciNet  MATH  Google Scholar 

  177. Potapov, V.P.: ‘The multiplicative structure of J-contractive matrix functions’, Amer. Math. Soc. Transl. 15, no. 2 (1960), 131–243.

    MathSciNet  MATH  Google Scholar 

  178. Regalia, P.A.: Adaptive HR filtering and signal processing and control, M. Dekker, 1995.

    Google Scholar 

  179. Richter, S.: ‘A representation theorem for cyclic analytic two-isometries’, Trans. Amer. Math. Soc. 328 (1991), 325–349.

    MathSciNet  MATH  Google Scholar 

  180. Sz.-Nagy, B., and Foias, C.: Harmonic analysis of operators on Hilbert space, North-Holland, 1970.

    Google Scholar 

  181. Bernstein, I.N., Gelfand, I.M., and Gelfand, S.I.: ‘Structure of representations generated by vectors of highest weight’, Funkts. Anal. Prilozh. 5, no. 1 (1971), 1–9.

    MathSciNet  MATH  Google Scholar 

  182. Bernstein, I.N., Gelfand, I.M., and Gelfand, S.I.: ‘Differential operators on the base affine space and a study of g-modules’, in I.M. Gelfand (ed.): Lie groups and their representations, Proc. Summer School on Group Representations, Janos Bolyai Math. Soc.&Wiley, 1975, pp. 39–64.

    Google Scholar 

  183. Bernstein, I.N., Gelfand, I.M., and Gelfand, S.I.: ‘A certain category of g-modules’, Funkts. Anal. Prilozh. 10, no. 2 (1976), 1–8.

    MathSciNet  Google Scholar 

  184. Rocha-Caridi, A.: ‘Splitting criteria for g-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite dimensional, irreducible g-module’, Trans. Amer. Math. Soc. 262, no. 2 (1980), 335–366.

    MathSciNet  MATH  Google Scholar 

  185. Rocha-Caridi, A., and Wallach, N.R.: ‘Projective modules over graded Lie algebras’, Math. Z. 180 (1982), 151–177.

    MathSciNet  MATH  Google Scholar 

  186. Rocha-Caridi, A., and Wallach, N.R.: ‘Highest weight modules over graded Lie algebras: Resolutions, filtrations and character formulas’, Trans. Amer. Math. Soc. 277, no. 1 (1983), 133–162.

    MathSciNet  MATH  Google Scholar 

  187. Bhatnagar, P.L., Gross, E.P., and Krook, M.: ‘A model for collision processes in gases’, Phys. Rev. 94 (1954), 511.

    MATH  Google Scholar 

  188. Bouchut, F.: ‘Construction of BGK models with a family of kinetic entropies for a given system of conservation laws’, J-Statist. Phys. 95 (1999), 113–170.

    MathSciNet  MATH  Google Scholar 

  189. Bremer, Y.: ‘Averaged multivalued solutions for scalar conservation laws’, SIAM J. Numer. Anal. 21 (1984), 1013–1037.

    MathSciNet  Google Scholar 

  190. Brenier, Y., and Corrías, L.: ‘A kinetic formulation for multi-branch entropy solutions of scalar conservation laws’, Ann. Inst. H. Poincaré Anal. Non Lin. 15 (1998), 169–190.

    MATH  Google Scholar 

  191. Brenier, Y., Corrías, L., and Natalini, R.: ‘A relaxation approximation to a moment hierarchy of conservation laws with kinetic formulation’, preprint (1998).

    Google Scholar 

  192. Cercignani, C., Illner, R., and Pulvirenti, M.: The mathematical theory of dilute gases, Vol. 106, Springer, 1994.

    MATH  Google Scholar 

  193. Chen, G.Q., Levermore, C.D., and Liu, T.-P.: ‘Hyperbolic conservation laws with stiff relaxation terms and entropy’, Commun. Pure Appl. Math. 47 (1994), 787–830.

    MathSciNet  MATH  Google Scholar 

  194. Giga, Y., and Miyakawa, T.: ‘A kinetic construction of global solutions of first order quasilinear equations’, Duke Math. J. 50 (1983), 505–515.

    MathSciNet  MATH  Google Scholar 

  195. Jin, S., and Xin, Z.-P.: ‘The relaxation schemes for systems of conservation laws in arbitrary space dimensions’, Commun. Pure Appl. Math. 48 (1995), 235–276.

    MathSciNet  MATH  Google Scholar 

  196. Levermore, CD.: ‘Moment closure hierarchies for kinetic theories’, J. Statist. Phys. 83 (1996), 1021–1065.

    MathSciNet  MATH  Google Scholar 

  197. Lions, P.-L., Perthame, B., and Tadmor, E.: ‘A kinetic formulation of multidimensional scalar conservation laws and related equations’, J. Amer. Math. Soc. 7 (1994), 169–191.

    MathSciNet  MATH  Google Scholar 

  198. Natalini, R.: ‘A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws’, J. Diff. Eq. 148 (1998), 292–317.

    MathSciNet  MATH  Google Scholar 

  199. Perthame, B.: ‘Global existence to the BGK model of Boltz-mann equation’, J. Diff. Eq. 82 (1989), 191–205.

    MathSciNet  MATH  Google Scholar 

  200. Perthame, B.: ‘Boltzmann type schemes for gas dynamics and the entropy property’, SIAM J. Numer. Anal. 27 (1990), 1405–1421.

    MathSciNet  MATH  Google Scholar 

  201. Perthame, B., and Pulvirenti, M.: ‘Weighted L bounds and uniqueness for the Boltzmann BGK model’, Arch. Rat. Mech. Anal. 125 (1993), 289–295.

    MathSciNet  MATH  Google Scholar 

  202. Perthame, B., and Tadmor, E.: ‘A kinetic equation with kinetic entropy functions for scalar conservation laws’, Comm. Math. Phys. 136 (1991), 501–517.

    MathSciNet  MATH  Google Scholar 

  203. Truesdell, C., and Muncaster, R.G.: Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas, treated as a branch of rational mechanics, Vol. 83 of Pure Appl. Math., Acad. Press, 1980.

    Google Scholar 

  204. Bénabou, J.: Introduction to bicategories, Vol. 47 of Lecture Notes Math., Springer, 1967, pp. 1–77.

    Google Scholar 

  205. Bénabou, J.: ‘Les distributeurs’, Sem. Math. Pure Univ. Catholique de Louvain 33 (1973).

    Google Scholar 

  206. Betti, R., Carboni, A., and Walters, R.: ‘Variation through enrichment’, J. Pure Appl. Algebra 29 (1983), 109–127.

    MathSciNet  MATH  Google Scholar 

  207. Bird, G.J., Kelly, G.M., Power, A.J., and Street, R.: ‘Flexible limits for 2-categories’, J. Pure Appl. Algebra 61 (1989), 1–27.

    MathSciNet  MATH  Google Scholar 

  208. Brown, R.: ‘Higher dimensional group theory’, in R. Brown and T.L. Thickstun (eds.): Low dimensional topology, Vol. 48 of Lecture Notes London Math. Soc, Cam bridge Univ. Press, 1982, pp. 215–238.

    Google Scholar 

  209. Carboni, A., Johnson, S., Street, R., and Verity, D.: ‘Modulated bicategories’, J. Pure Appl. Algebra 94 (1994), 229–282.

    MathSciNet  MATH  Google Scholar 

  210. Ehresmann, C.: Catégories et structures, Dunod, 1965.

    MATH  Google Scholar 

  211. Eilenberg, S., and Kelly, G.M.: ‘Closed categories’, Proc. Conf. Categorical Algebra, La Jolla. Springer, 1966, pp. 421–562.

    Google Scholar 

  212. Gabriel, P., and Zisman, M.: Calculus of fractions and homotopy theory, Vol. 35 of Ergebn. Math. Grenzgeb., Springer, 1967.

    MATH  Google Scholar 

  213. Giraud, J.: Cohomologie non abélienne, Springer, 1971.

    MATH  Google Scholar 

  214. Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann, 1964.

    Google Scholar 

  215. Gordon, R., Power, A.J., and Street, R.: Coherence for tricategories, Vol. 117 of Memoirs, Amer. Math. Soc, 1995, p. 558.

    Google Scholar 

  216. Gray, J.W.: Report on the meeting of the Midwest Category Seminar in Zurich, Vol. 195 of Lecture Notes Math., Springer, 1971, pp. 248–255.

    Google Scholar 

  217. Gray, J.W.: Formal category theory: adjointness for 2- categories, Vol. 391 of Lecture Notes Math., Springer, 1974.

    Google Scholar 

  218. Hakim, M.: Topos annelés et schémas relatifs, Vol. 64 of Ergebn. Math. Grenzgeb., Springer, 1972.

    MATH  Google Scholar 

  219. Joyal, A., and Street, R.: ‘The geometry of tensor calculus I’, Adv. Math. 88 (1991), 55–112.

    MathSciNet  MATH  Google Scholar 

  220. Kelly, G.M.: Adjunction for enriched categories, Vol. 106 of Lecture Notes Math., Springer, 1969, pp. 166–177.

    Google Scholar 

  221. Kelly, G.M.: An abstract approach to coherence, Vol. 281 of Lecture Notes Math., Springer, 1972, pp. 106–147.

    Google Scholar 

  222. Kelly, G.M., and Street, R.: Review of the elements of 2-categories, Vol. 420 of Lecture Notes Math., Springer, 1974, pp. 75–103.

    Google Scholar 

  223. Lawvere, F.W.: ‘The category of categories as a foundation for mathematics’: Proc. Conf. Categorical Algebra, La Jolla, Springer, 1966, pp. 1–20.

    Google Scholar 

  224. Lawvere, F.W.: ‘Metric spaces, generalised logic, and closed categories’, Rend. Sem. Mat. Fis. Milano 43 (1974), 135–166.

    MathSciNet  MATH  Google Scholar 

  225. MacLane, S.: Categories for the working mathematician, Vol. 5 of Graduate Texts Math., Springer, 1971.

    Google Scholar 

  226. MacLane, S., and Paré, R.: ‘Coherence for bicategories and indexed categories’, J. Pure Appl. Algebra 37 (1985), 59–80.

    MathSciNet  MATH  Google Scholar 

  227. Pitts, A.: ‘Applications of sup-lattice enriched category theory to sheaf theory’, Proc. London Math. Soc. (3)57 (1988), 433–480.

    MathSciNet  MATH  Google Scholar 

  228. Rosebrugh, R.D., and Wood, R.J.: ‘Proarrows and cofibrations’, J. Pure Appl. Algebra 53 (1988), 271–296.

    MathSciNet  MATH  Google Scholar 

  229. Street, R.: ‘The formal theory of monads’, J. Pure Appl. Algebra 2 (1972), 149–168.

    MathSciNet  MATH  Google Scholar 

  230. Street, R.: Elementary cosmoi 1, Vol. 420 of Lecture Notes Math., Springer, 1974, pp. 134–180.

    Google Scholar 

  231. Street, R.: ‘Limits indexed by category-valued 2-functors’, J. Pure Appl. Algebra 8 (1976), 149–181.

    MathSciNet  MATH  Google Scholar 

  232. Street, R.: ‘Fibrations in bicategories’, Cah. Topol. Géom. Diff. 2153–56 (1980; 1987)

    MathSciNet  Google Scholar 

  233. Street, R.: ‘Fibrations in bicategories’, Cah. Topol. Géom. Diff. 21; 111–160 (1980; 1987)

    MathSciNet  Google Scholar 

  234. Street, R.: ‘Fibrations in bicategories’, Cah. Topol. Géom. Diff. 28 (1980; 1987), 53–56;

    MathSciNet  MATH  Google Scholar 

  235. Street, R.: ‘Fibrations in bicategories’, Cah. Topol. Géom. Diff. 28. (1980; 1987) 111–160

    MathSciNet  Google Scholar 

  236. Street, R.: ‘Cauchy characterization of enriched categories’, Rend. Sem. Mat. Fis. Milano 51 (1981), 217–233.

    MathSciNet  MATH  Google Scholar 

  237. Street, R.: ‘Conspectus of variable categories’, J. Pure Appl. Algebra 21 (1981), 307–338.

    MathSciNet  MATH  Google Scholar 

  238. Street, R.: Characterization of bicategories of stacks, Vol. 962 of Lecture Notes Math., Springer, 1982, pp. 282–291.

    Google Scholar 

  239. Street, R.: ‘Two dimensional sheaf theory’, J. Pure Appl. Algebra 23 (1982), 251–270.

    MathSciNet  MATH  Google Scholar 

  240. Street, R.: ‘Enriched categories and cohomology’, Quaest. Math. 6 (1983), 265–283.

    MathSciNet  MATH  Google Scholar 

  241. Street, R.: ‘Higher categories, strings, cubes and simplex equations’, Appl. Categorical Struct. 3 (1995), 29–77

    MathSciNet  MATH  Google Scholar 

  242. Street, R.: ‘Higher categories, strings, cubes and simplex equations’, Appl. Categorical Struct. 3 (1995)and 303.

    MathSciNet  MATH  Google Scholar 

  243. Street, R.: ‘Categorical structures’, in M. Hazewinkel (ed.): Handbook of Algebra, Vol. I, Elsevier, 1996, pp. 529–577.

    Google Scholar 

  244. Street, R., and Walters, R.F.C.: ‘Yoneda structures on 2-categories’, J. Algebra 50 (1978), 350–379.

    MathSciNet  MATH  Google Scholar 

  245. Walters, R.F.C.: ‘Sheaves on sites as Cauchy-complete categories’, J. Pure Appl. Algebra 24 (1982), 95–102.

    MathSciNet  MATH  Google Scholar 

  246. Birkhoff, G.D.: ‘Singular points of ordinary linear differential equations’, Trans. Amer. Math. Soc. 10 (1909), 436–470.

    MathSciNet  MATH  Google Scholar 

  247. Böttcher, A., and Silbermann, B.: Analysis of Toeplitz operators, Springer, 1990.

    MATH  Google Scholar 

  248. Clancey, K.F., and Gohberg, I.Z.: Factorization of matrix functions and singular integral operators, Birkhäuser, 1981.

    MATH  Google Scholar 

  249. Freed, D.: ‘The geometry of loop groups’, J. Diff. Geom. 28 (1988), 223–276.

    MathSciNet  MATH  Google Scholar 

  250. Gakhov, F.D.: Boundary value problems, 3rd ed., Nauka, 1977.

    MATH  Google Scholar 

  251. Gohberg, I.Z., and Krein, M.G.: ‘Systems of integral equations on a half-line with kernels depending on the difference of the arguments’, Transl. Amer. Math. Soc. 14 (1960), 217–284.

    MathSciNet  Google Scholar 

  252. Grothendieck, A.: ‘Sur la classification des fibres holomorphes sur la sphère de Riemann’, Amer. J. Math. 79 (1957), 121–138.

    MathSciNet  MATH  Google Scholar 

  253. Hazewinkel, M., and Martin, C.F.: ‘Representations of the symmetric groups, the specialization order, systems, and Grassmann manifolds’, Enseign. Math. 29 (1983), 53–87.

    MathSciNet  MATH  Google Scholar 

  254. Khimshiashvili, G.: ‘On the Riemann-Hilbert problem for a compact Lie group’, Dokl. Akad. Nauk SSSR 310 (1990), 1055–1058. (In Russian.)

    MathSciNet  Google Scholar 

  255. Pressley, A., and Segal, G.: Loop groups, Clarendon Press, 1986.

    MATH  Google Scholar 

  256. Segal, G., and Wilson, G.: ‘Loop groups and equations of KdV type’, Publ. Math. IHES 61 (1985), 5–65.

    MathSciNet  MATH  Google Scholar 

  257. Vekua, N.P.: Systems of singular integral equations, Nauka, 1970. (In Russian.)

    Google Scholar 

  258. Zhang, S.: ‘Factorizations of invertible operators and K-theory of C*-algebras’, Bull. Amer. Math. Soc. 28 (1993), 75–83.

    MathSciNet  MATH  Google Scholar 

  259. Birkhoff, G.D.: ‘Singular points of ordinary linear differential equations’, Trans. Amer. Math. Soc. 10 (1909), 436–470.

    MathSciNet  MATH  Google Scholar 

  260. Bojarski, B.: ‘On the stability of Hilbert problem for holo-morphic vector’, Bull. Acad. Sci. Georgian SSR 21 (1958), 391–398.

    Google Scholar 

  261. Disney, S.: ‘The exponents of loops on the complex general linear group’, Topology 12 (1973), 297–315.

    MathSciNet  MATH  Google Scholar 

  262. Freed, D.: ‘The geometry of loop groups’, J. Diff. Geom. 28 (1988), 223–276.

    MathSciNet  MATH  Google Scholar 

  263. Gohberg, I.Z., and Krein, M.G.: ‘Systems of integral equations on a half-line with kernels depending on the difference of the arguments’, Transl. Amer. Math. Soc. 14 (1960), 217–284.

    MathSciNet  Google Scholar 

  264. Grothendieck, A.: ‘Sur la classification des fibres holomorphes sur la sphère de Riemann’, Amer. J. Math. 79 (1957), 121–138.

    MathSciNet  MATH  Google Scholar 

  265. Khimshiashvili, G.: ‘Lie groups and transmission problems on Riemann surfaces’, Contemp. Math. 131 (1992), 164–178.

    MathSciNet  Google Scholar 

  266. Pressley, A., and Segal, G.: Loop groups, Clarendon Press, 1986.

    MATH  Google Scholar 

  267. Duistermaat, J.J., and Grünbaum, F.A.: ‘Differential equations in the spectral parameter’, Comm. Math. Phys. 103 (1986), 177–240.

    MathSciNet  MATH  Google Scholar 

  268. Grünbaum, F.A.: ‘Some nonlinear evolution equations and related topics arising in medical imaging’, Phys. D 18 (1986), 308–311.

    MathSciNet  MATH  Google Scholar 

  269. Harnad, J., and Kasman, A. (eds.): The bispectral problem (Montreal, PQ, 1997), CRM Proc. Lecture Notes. Amer. Math. Soc, 1998.

    MATH  Google Scholar 

  270. Wilson, G.: ‘Bispectral commutative ordinary differential operators’, J. Reine Angew. Math. 442 (1993), 177–204.

    MathSciNet  MATH  Google Scholar 

  271. Zubelli, J.P., and Magri, F.: ‘Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV,’ Comm. Math. Phys. 141, no. 2 (1991), 329–351.

    MathSciNet  MATH  Google Scholar 

  272. Asmussen, S.: Applied probability and queues, Wiley, 1987.

    MATH  Google Scholar 

  273. Blackwell, D.: ‘A renewal theorem’, Duke Math. J. 15 (1948), 145–150.

    MathSciNet  MATH  Google Scholar 

  274. Feller, W.: An introduction to probability theory and its applications, 3rd ed., Vol. 1, Wiley, 1968.

    MATH  Google Scholar 

  275. Feller, W.: An introduction to probability theory and its applications, 2nd ed., Vol. 2, Wiley, 1970.

    Google Scholar 

  276. Lindvall, T.: Lectures on the coupling method, 2nd ed., Vol. II, Wiley, 1992.

    MATH  Google Scholar 

  277. Fischer, S.D.: Function thory on planar domains, Wiley, 1983.

    Google Scholar 

  278. Garnett, J.B.: Bounded analytic functions, Acad. Press, 1981.

    MATH  Google Scholar 

  279. Voichick, M., and Zalcman, L.: ‘Inner and outer functions on Riemann Surfaces’, Proc. Amer. Math. Soc. 16 (1965), 1200–1204.

    MathSciNet  MATH  Google Scholar 

  280. Bliedtner, J., and Hansen, W.: ‘Cones of hyperharmonic functions’, Math. Z. 151 (1976), 71–87.

    MathSciNet  MATH  Google Scholar 

  281. Bliedtner, J., and Hansen, W.: Balayage spaces: An analytic and probabilistic approach to balayage, Universitext. Springer, 1986.

    MATH  Google Scholar 

  282. Boboc, N., Bucur, Gh., and Cornea, A.: Order and convexity in potential theory: H-cones, Vol. 853 of Lecture Notes Math., Springer, 1981.

    MATH  Google Scholar 

  283. Constantinescu, C., and Cornea, A.: Potential theory on harmonic spaces, Springer, 1972.

    MATH  Google Scholar 

  284. Lukeš, J., Malý, J., and Zajíček, L.: Fine topology methods in real analysis and potential theory, Vol. 1189 of Lecture Notes Math., Springer, 1986.

    MATH  Google Scholar 

  285. Aguirre, F., and Conca, C.: ‘Eigenfrequencies of a tube bundle immersed in a fluid’, Appl. Math. Optim. 18 (1988), 1–38.

    MathSciNet  MATH  Google Scholar 

  286. Allaire, G., and Conca, C.: ‘Bloch-wave homogenization for a spectral problem in fluid-solid structures’, Arch. Rat. Mech. Anal. 135 (1996), 197–257.

    MathSciNet  MATH  Google Scholar 

  287. Allaire, G., and Conca, C.: ‘Boundary layers in the homogenization of a spectral problem in fluid-solid structures’, SIAM J. Math. Anal. 29 (1998), 343–379.

    MathSciNet  MATH  Google Scholar 

  288. Bensoussan, A., Lions, J.L., and Papanicolaou, G.: Asymptotic analysis in periodic structures, North-Holland, 1978.

    Google Scholar 

  289. Bloch, F.: ‘Über die Quantenmechanik der Electronen im Kristallgitern’, Z. Phys. 52 (1928), 555–600.

    Google Scholar 

  290. Brillouin, L.: Propagation of waves in periodic structures, Dover, 1953.

    Google Scholar 

  291. Conca, C., Planchard, J., and Vanninathan, M.: Fluids and periodic structures, Wiley&Masson, 1995.

    MATH  Google Scholar 

  292. Conca, C., and Vanninathan, M.: ‘A spectral problem arising in fluid-solid structures’, Comput. Meth. Appl. Mech. Eng. 69 (1988), 215–242.

    MathSciNet  MATH  Google Scholar 

  293. Conca, C., and Vanninathan, M.: ‘Homogenization of periodic structures via Bloch decomposition’, SIAM J. Appl. Math. 57 (1997), 1639–1659.

    MathSciNet  MATH  Google Scholar 

  294. Cracknell, A.P., and Wong, K.C.: The Fermi surface, Clarendon Press, 1973.

    Google Scholar 

  295. Eastham, M.: The spectral theory of periodic differential equations, Scottish Acad. Press, 1973.

    MATH  Google Scholar 

  296. Floquet, G.: ‘Sur les équations différentielles linéaires à coefficients périodiques’, Ann. Ecole Norm. Ser. 2 12 (1883), 47–89.

    MathSciNet  Google Scholar 

  297. Gelfand, I.M.: ‘Entwicklung nach Eigenfunktionen einer Gleichung mit periodischer Koeffizienten’, Dokl. Akad. Nauk SSSR 73 (1950), 1117–1120.

    Google Scholar 

  298. Odeh, F., and Keller, J.B.: ‘Partial differential equations with periodic coefficients and Bloch waves in crystals’, J. Math. Phys. 5 (1964), 1499–1504.

    MathSciNet  MATH  Google Scholar 

  299. Reed, M., and Simon, B.: Methods of modern mathematical physics, Acad. Press, 1978.

    MATH  Google Scholar 

  300. Santosa, F., and Symes, W.W.: ‘A dispersive effective medium for wave propagation in periodic composites’, SIAM J. Appl. Math. 51 (1991), 984–1005.

    MathSciNet  MATH  Google Scholar 

  301. Sanchez-Hubert, J., and Sánchez-Palencia, E.: Vibration and coupling of continuous systems, Springer, 1989.

    MATH  Google Scholar 

  302. Titchmarsh, E.C.: Eigen]’unctions expansions Part II, Clarendon Press, 1958.

    Google Scholar 

  303. Wilcox, C.: ‘Theory of Bloch waves’, J. Anal. Math. 33 (1978), 146–167.

    MathSciNet  MATH  Google Scholar 

  304. Ziman, J.M.: Principles of the theory of solids, Cambridge Univ. Press, 1972.

    Google Scholar 

  305. Bochner, S.: ‘Summation of multiple Fourier series by spherical means’, Trans. Amer. Math. Soc. 40 (1936), 175–207.

    MathSciNet  Google Scholar 

  306. Fefferman, C.: ‘A note on spherical summation multipliers’, Israel J. Math. 15 (1973), 44–52.

    MathSciNet  MATH  Google Scholar 

  307. Golubov, B.I.: ‘On Gibb’s phenomenon for Riesz spherical means of multiple Fourier integrals and Fourier series’, Anal. Math. 4 (1978), 269–287.

    MathSciNet  MATH  Google Scholar 

  308. Levitan, B.M.: ‘Ueber die Summierung mehrfacher Fouri-erreihen und Fourierintegrale’, Dokl. Akad. Nauk SSSR 102 (1955), 1073–1076.

    MathSciNet  MATH  Google Scholar 

  309. Sogge, C.: ‘On the convergence of Riesz means on compact manifolds’, Ann. of Math. 126 (1987), 439–447.

    MathSciNet  MATH  Google Scholar 

  310. Stein, E.M.: Harmonic analysis, Princeton Univ. Press, 1993.

    MATH  Google Scholar 

  311. Thangavelu, S.: Lectures on H ermite and Laguerre expansions, Princeton Univ. Press, 1993.

    Google Scholar 

  312. Ando, T.: ‘Banachverbände und positive Projektionen’, Math. Z. 109 (1969), 121–130.

    MathSciNet  MATH  Google Scholar 

  313. Bohnenblust, H.F.: ‘An axiomatic characterization of L p -spaces’, Duke Math. J. 6 (1940), 627–640.

    MathSciNet  Google Scholar 

  314. Kakutani, S.: ‘Concrete representation of abstract L p -spaces and the mean ergodic theorem’, Ann. of Math. 42 (1941), 523–537.

    MathSciNet  Google Scholar 

  315. Meyer-Nieberg, P.: Banach lattices, Springer, 1991.

    MATH  Google Scholar 

  316. Zippin, M.: ‘On perfectly homogeneous bases in Banach spaces’, Israel J. Math. 4 A (1966), 265–272.

    MathSciNet  Google Scholar 

  317. Boas, H.P.: ‘Bohr’s power series theorem in several variables’, Proc. Amer. Math. Soc. 125 (1997), 2975–2979.

    MathSciNet  MATH  Google Scholar 

  318. Caratheodory, C.: Theory of functions of a complex variable, Vol. 1, Chelsea, 1983, pp. Sects. 274–275.

    Google Scholar 

  319. Aizenberg, L.: ‘Multidimensional analogues of Bohr’s theorem on power series’, Proc. Amer. Math. Soc. 128 (2000).

    Google Scholar 

  320. Aizenberg, L., Aytuna, A., and Djakov, P.: ‘An abstract approach to Bohr phenomenon’, Proc. Amer. Math. Soc. (to appear).

    Google Scholar 

  321. Aizenberg, L., Aytuna, A., and Djakov, P.: ‘Generalization of Bohr’s theorem for arbitrary bases in spaces of holo-morphic functions of several variables’, J. Anal. Appl. (to appear).

    Google Scholar 

  322. Boas, H.P., and Khavinson, D.: ‘Bohr’s power series theorem in several variables’, Proc. Amer. Math. Soc. 125 (1997), 2975–2979.

    MathSciNet  MATH  Google Scholar 

  323. Bohr, H.: ‘A theorem concerning power series’, Proc. London Math. Soc. 13, no. 2 (1914), 1–5.

    MathSciNet  MATH  Google Scholar 

  324. Cercignani, C.: ‘On the Boltzmann equation for rigid spheres’, Transp. Theory Stat. Phys. 2 (1972), 211–225.

    MathSciNet  MATH  Google Scholar 

  325. Cercignani, C., Gerasimenko, V., and Petrina, D.: Many-particle dynamics and kinetic equations, Kluwer Acad. Publ., 1997.

    MATH  Google Scholar 

  326. Gerasimenko, V., and Petrina, D.: ‘Mathematical problems of statistical mechanics of a hard-sphere system’, Russian Math. Surveys 45, no. 3 (1990), 159–211.

    MathSciNet  Google Scholar 

  327. Grad, H.: ‘Principles of the kinetic theory of gases’: Handbuch Physik, Vol. 12, Springer, 1958, pp. 205–294.

    Google Scholar 

  328. Lanford, O.E.: Time evolution of large classical dynamical system, Vol. 38 of Lecture Notes Physics, Springer, 1975, pp. 1–111.

    Google Scholar 

  329. Baxter, R.J.: Exactly solved models in statistical mechanics, Acad. Press, 1992.

    Google Scholar 

  330. Drinfel’d, V.G.: ‘Hopf algebras and the quantum Yang-Baxter equation’, Soviet Math. Dokl. 32 (1985), 254–258. (Translated from the Russian.)

    Google Scholar 

  331. Jimbo, M.: ‘A q-difference analogue of U q g and the Yang-Baxter equation’, Lett. Math. Phys. 10 (1985), 63–69.

    MathSciNet  MATH  Google Scholar 

  332. Jimbo, M. (ed.): Yang-Baxter equation in integrable systems, World Sci., 1990.

    MATH  Google Scholar 

  333. Kubo, R., et al.: Statistical physics, Vol. 1–2, Springer, 1985.

    Google Scholar 

  334. Reif, F.: Statistical and thermal physics, McGraw-Hill, 1965.

    Google Scholar 

  335. Tolman, R.C.: The principles of statistical mechanics, Oxford Univ. Press, 1938, Reprint: 1980.

    MATH  Google Scholar 

  336. Wadati, M., Deguchi, T., and Akutsu, Y.: ‘Exactly solvable models and knot theory’, Physics Reports 180 (1989), 247–332.

    MathSciNet  Google Scholar 

  337. Yang, C.N., and Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics, Vol. 1–2, World Sci., 1989; 1994.

    MATH  Google Scholar 

  338. Ajtai, M.: ‘Ej — formulae on finite structures’, Ann. Pure Appl. Logic 24 (1983), 1–48.

    MathSciNet  MATH  Google Scholar 

  339. Ajtai, M., Komlós, J., and Szemerédi, E.: ‘An O(nlogn) sorting network’, Combinatorica 3 (1983), 1–19.

    MathSciNet  MATH  Google Scholar 

  340. Alon, N., and Boppana, R.: ‘The monotone circuit complexity of Boolean functions’, Combinatorica 7, no. 1 (1987), 1–22.

    MathSciNet  MATH  Google Scholar 

  341. Boppana, R., and Sipser, M.: ‘Complexity of finite functions’, in J. Van Leeuwen (ed.): Handbook of Theoretical Computer Science, Vol. A, 1990, pp. 758–804; Chap.14.

    Google Scholar 

  342. Furst, M., Saxe, J.B., and Sipser, M.: ‘Parity, circuits and the polynomial-time hierarchy’, Math. Systems Theory 17 (1984), 13–27.

    MathSciNet  MATH  Google Scholar 

  343. Hastad, J.: ‘Almost optimal lower bounds for small depth circuits’, in S. Micali (ed.): Randomness and Computation, Vol. 5 of Adv. Comput. Res., JAI Press, 1989, pp. 143–170.

    Google Scholar 

  344. Kushilevitz, E., and Nisan, N.: Communication complexity, Cambridge Univ. Press, 1996.

    Google Scholar 

  345. Lupanov, O.B.: ‘A method of circuit synthesis’, Izv. V.U.Z. (Radiofizika) 1, no. 1 (1958), 120–140. (In Russian.)

    Google Scholar 

  346. Razborov, A.A.: ‘Lower bounds on the monotone complexity of some Boolean functions’, Soviet Math. Dokl. 31 (1985), 354–357.

    MATH  Google Scholar 

  347. Savage, J.E.: ‘Computational work and time on finite machines’, J. ACM 19, no. 4 (1972), 660–674.

    MathSciNet  MATH  Google Scholar 

  348. Schonhage, A., and Strassen, V.: ‘Schnelle Multiplikation grosser Zahlen’, Computing 7 (1971), 281–292.

    MathSciNet  Google Scholar 

  349. Shannon, C.E.: ‘The synthesis of two-terminal switching circuits’, Bell Systems Techn. J. 28, no. 1 (1949), 59–98.

    MathSciNet  Google Scholar 

  350. Spira, P.M.: ‘On time-hardware complexity of tradeoffs for Boolean functions’: Proc. 4th Hawaii Symp. System Sciences, North Hollywood&Western Periodicals, 1971, pp. 525–527.

    Google Scholar 

  351. Wegener, I.: The complexity of Boolean functions, Wiley&Teubner, 1987.

    MATH  Google Scholar 

  352. Yao, Y.: ‘Separating the polynomial-time hierarchy by oracles’: Proc. 26th Ann. IEEE Symp. Found. Comput. Sci., 1985, pp. 1–10.

    Google Scholar 

  353. Athreya, K.B.: ‘Bootstrap of the mean in the infinite variance case’, Ann. Statist. 15 (1987), 724–731.

    MathSciNet  MATH  Google Scholar 

  354. Davison, A.C., and Hinkley, D.V.: Bootstrap methods and their application, Cambridge Univ. Press, 1997.

    MATH  Google Scholar 

  355. Efron, B.: ‘Bootstrap methods: another look at the jack-knife’, Ann. Statist. 7 (1979), 1–26.

    MathSciNet  MATH  Google Scholar 

  356. Efron, B., and Tibshirani, R.J.: An introduction to the bootstrap, Chapman&Hall, 1993.

    MATH  Google Scholar 

  357. Giné, E.: ‘Lectures on some aspects of the bootstrap’, in P. Bernard (ed.): Ecole d’Eté de Probab. Saint Flour XXVI-1996, Vol. 1665 of Lecture Notes Math., Springer, 1997.

    Google Scholar 

  358. Götze, F., and Künsch, H.R.: ‘Second order correctness of the blockwise bootstrap for stationary observations’, Ann. Statist. 24 (1996), 1914–1933.

    MathSciNet  MATH  Google Scholar 

  359. Hall, P.: The bootstrap and Edgeworth expansion, Springer, 1992.

    Google Scholar 

  360. Mammen, E.: When does bootstrap work? Asymptotic results and simulations, Vol. 77 of Lecture Notes Statist., Springer, 1992.

    MATH  Google Scholar 

  361. Putter, H., and Zwet, W.R. van: ‘Resampling: consistency of substitution estimators’, Ann. Statist. 24 (1996), 2297–2318.

    MathSciNet  MATH  Google Scholar 

  362. Shao, J., and Tu, D.: The jackknife and bootstrap, Springer, 1995.

    MATH  Google Scholar 

  363. Bartsch, T.: ‘On the existence of Borsuk-Ulam theorems’, Topology 31 (1992), 533–543.

    MathSciNet  MATH  Google Scholar 

  364. Borsuk, K.: ‘Drei Sätze über die n-dimensionale Sphäre’, Funct. Math. 20 (1933), 177–190.

    Google Scholar 

  365. Krein, M.G., Krasnosel’skii, M.A., and Mil’man, D.P.: ‘On the defect numbers of linear operators in a Banach space and some geometrical questions’, Sb. Trud. Inst. Mat. Akad. Nauk Ukrain. SSR 11 (1948), 97–112. (In Russian.)

    Google Scholar 

  366. Steinlein, H.: ‘Borsuk’s antipodal theorem and its generalizations and applications: a survey. Méthodes topologiques en analyse non linéaire’: Sém. Math. Super. Montréal, Sém. Sci. OTAN (NATO Adv. Study Inst), Vol. 95, 1985, pp. 166–235.

    MathSciNet  Google Scholar 

  367. Bott, R.: ‘Homogeneous vector bundles’, Ann. of Math. 66 (1957), 203–248.

    MathSciNet  MATH  Google Scholar 

  368. Demazure, M.: ‘A very simple proof of Bott’s theorem’, Invent. Math. 33 (1976).

    Google Scholar 

  369. Wallach, N.R.: Harmonic analysis on homogeneous spaces, M. Dekker, 1973.

    MATH  Google Scholar 

  370. Boyer, R.S., Kaufmann, M., and Moore, J.S.: ‘The Boyer-Moore theorem prover and its interactive enhancement’, Cornput. Math. Appl. 29, no. 2 (1995), 27–62.

    MathSciNet  Google Scholar 

  371. Boyer, R.S., and Moore, J.S.: A computational logic, Acad. Press, 1979.

    MATH  Google Scholar 

  372. Boyer, R.S., and Moore, J.S.: A computational logic handbook, Acad. Press, 1988.

    Google Scholar 

  373. FTP, http://ftp.cs.utexas.edu/pub/boyer/nqthm/index.html (1998).

  374. Hunt, W.: FM8501: A verified microprocessor, Vol. 795 of Lecture Notes Computer Sci., Springer, 1994.

    MATH  Google Scholar 

  375. Kaufmann, M., and Moore, J.S.: ‘An industrial strength theorem prover for a logic based on common Lisp’, IEEE Trans. Software Engineering 23, no. 4 (1997), 203–213.

    Google Scholar 

  376. Shankar, N.: Metamathematics: Machines, and Goedel’s proof, Cambridge Univ. Press, 1994.

    MATH  Google Scholar 

  377. Joyal, A., and Street, R.: ‘Braided monoidal categories’, Math. Reports Macquarie Univ. 86008 (1986).

    Google Scholar 

  378. MacLane, S.: Categories for the working mathematician, Vol. 5 of GTM, Springer, 1974.

    Google Scholar 

  379. Majid, S.: Foundations of quantum group theory, Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  380. Majid, S.: ‘Examples of braided groups and braided matrices’, J. Math. Phys. 32 (1991), 3246–3253.

    MathSciNet  MATH  Google Scholar 

  381. Majid, S.: Algebras and Hopf algebras in braided categories, Vol. 158 of Lecture Notes Pure Appl. Math., M. Dekker, 1994, pp. 55–105.

    Google Scholar 

  382. Majid, S.: Foundations of quantum group theory, Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  383. Majid, S.: ‘Double bosonisation and the construction of U q (g)’, Math. Proc. Cambridge Philos. Soc. 125 (1999), 151–192.

    MathSciNet  MATH  Google Scholar 

  384. Alperin, J.L.: Local representation theory, Cambridge Univ. Press, 1986.

    MATH  Google Scholar 

  385. Alperin, J.L.: ‘Weights for finite groups’, in P. Fong (ed.): Representations of Finite Groups, Vol. 47 of Proc. Symp. Pure Math., Amer. Math. Soc, 1987, pp. 369–379.

    Google Scholar 

  386. Broué, M.: ‘Isométries parfaites, types de blocs, catégories dérivées’, Astérisque 181–182 (1990), 61–92.

    Google Scholar 

  387. Curtis, C., and Reiner, I.: Methods of representation theory, Vol. II, Wiley, 1987.

    MATH  Google Scholar 

  388. Feit, W.: The representation theory of finite groups, North-Holland, 1982.

    MATH  Google Scholar 

  389. Nagao, H., and Tsushima, Y.: Representation of finite groups, Acad. Press, 1987.

    Google Scholar 

  390. Berger, T.R., and Knörr, R.: ‘On Brauer’s height 0 conjecture’, Nagoya Math. J. 109 (1988), 109–116.

    MathSciNet  MATH  Google Scholar 

  391. Feit, W.: The representation theory of finite groups, North-Holland, 1982.

    MATH  Google Scholar 

  392. Gluck, D., and Wolf, T.R.: ‘Brauer’s height conjecture for p-solvable groups’, Trans. Amer. Math. Soc. 282, no. 1 (1984), 137–152.

    MathSciNet  MATH  Google Scholar 

  393. Brauer, R.: ‘Zur Darstellungstheorie der Gruppen endlicher Ordnung II’, Math. Z. 72 (1959), 22–46.

    MathSciNet  Google Scholar 

  394. Curtis, C., and Reiner, I.: Methods of representation theory, Vol. II, Wiley, 1987.

    MATH  Google Scholar 

  395. Feit, W.: The representation theory of finite groups, North-Holland, 1982.

    MATH  Google Scholar 

  396. Nagao, H., and Tsushima, Y.: Representation of finite groups, Acad. Press, 1987.

    Google Scholar 

  397. Alperin, J.L.: Local representation theory, Cambridge Univ. Press, 1986.

    MATH  Google Scholar 

  398. Curtis, C., and Reiner, I.: Methods of representation theory, Vol. II, Wiley, 1987.

    MATH  Google Scholar 

  399. Nagao, H., and Tsushima, Y.: Representation of finite groups, Acad. Press, 1987.

    Google Scholar 

  400. Bredon, G.E.: Equivariant cohomology theories, Vol. 34 of Lecture Notes Math., Springer, 1967.

    MATH  Google Scholar 

  401. Dress, A.W.M.: ‘Contributions to the theory of induced representations’: Algebraic K-theory, II (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Vol. 342 of Lecture Notes Math., Springer, 1973, pp. 183–240.

    Google Scholar 

  402. Lück, W.: Tranformation groups and algebraic K-theory, Vol. 1408 of Lecture Notes Math., Springer, 1989.

    Google Scholar 

  403. May, J.P., et al.: Equivariant homotopy and cohomology theory, Vol. 91 of Regional Conf. Ser. Math., Amer. Math. Soc, 1996.

    MATH  Google Scholar 

  404. Moerdijk, I., and Svensson, J.A.: ‘The equivariant Serre spectral sequence’, Proc. Amer. Math. Soc. 118 (1993), 263–278.

    MathSciNet  MATH  Google Scholar 

  405. Tom Dieck, T.: Transformation groups and representation theory, Vol. 766 of Lecture Notes Math., Springer, 1979.

    MATH  Google Scholar 

  406. Brooks, J., and Jewett, R.: ‘On finitely additive vector measures’, Proc. Nat. Acad. Sci. USA 67 (1970), 1294–1298.

    MathSciNet  MATH  Google Scholar 

  407. Constantinescu, C.: ‘Some properties of spaces of measures’, Suppl. Atti Sem. Mat. Fis. Univ. Modena 35 (1991), 1–286.

    Google Scholar 

  408. D’Andrea, A.B., and Lucia, P. de: ‘The Brooks-Jewett theorem on an orthomodular lattice’, J. Math. Anal. Appl. 154 (1991), 507–522.

    MathSciNet  MATH  Google Scholar 

  409. Drewnowski, L.: ‘Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems’, Bull. Acad. Polon. Sci. 20 (1972), 725–731.

    MathSciNet  MATH  Google Scholar 

  410. Pap, E.: Null-additive set functions, Kluwer Acad. Publ.& Ister Sci., 1995.

    MATH  Google Scholar 

  411. Weber, H.: ‘Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and the Nikodym’s bounded-ness theorem’, Rocky Mtn. J. Math. 16 (1986), 253–275.

    MATH  Google Scholar 

  412. Blumenthal, R.M., and Getoor, R.K.: Markov processes and potential theory, Acad. Press, 1968.

    MATH  Google Scholar 

  413. Borodin, A.N., and Salminen, P.: Handbook of Brownian motion: Facts and formulae, Birkhäuser, 1996.

    MATH  Google Scholar 

  414. Ikeda, N., and Watanabe, S.: Stochastic differential equations and diffusion processes, North-Holland&Kodansha, 1981.

    MATH  Google Scholar 

  415. Itô, K., and McKean, H.P.: Diffusion processes and their sample paths, Springer, 1974.

    MATH  Google Scholar 

  416. Knight, F.: ‘Random walks and a sojourn density process of Brownian motion’, Trans. Amer. Math. Soc. 109 (1963), 56–86.

    MathSciNet  MATH  Google Scholar 

  417. Lévy, P.: ‘Sur certains processus stochastiques homogénes’, Compositio Math. 7 (1939), 283–339.

    MathSciNet  MATH  Google Scholar 

  418. Lévy, P.: Processus stochastiques et mouvement brownien, Gauthier-Villars, 1948.

    MATH  Google Scholar 

  419. McKean, H.P.: ‘Brownian local time’, Adv. Math. 15 (1975), 91–111.

    MathSciNet  Google Scholar 

  420. Perkins, E.: ‘The exact Hausdorff measure of the level sets of Brownian motion’, Z. Wahrscheinlichkeitsth. verw. Gebiete 58 (1981), 373–388.

    MathSciNet  MATH  Google Scholar 

  421. Ray, D.B.: ‘Sojourn times of a diffusion process III’, J. Math. 7 (1963), 615–630.

    MATH  Google Scholar 

  422. Taylor, S.J., and Wendel, J.G.: ‘The exact Hausdorff measure of the zero set of a stable process’, Z. Wahrscheinlichkeitsth. verw. Gebiete 6 (1966), 170–180.

    MathSciNet  MATH  Google Scholar 

  423. Trotter, H.F.: ‘A property of Brownian motion paths. III’, J. Math. 2 (1958), 425–433.

    MathSciNet  MATH  Google Scholar 

  424. Armijo, L.: ‘Minimization of functions having Lipschitz-continuous first partial derivatives’, Pacific J. Math. 16 (1966), 1–3.

    MathSciNet  MATH  Google Scholar 

  425. Bathe, K.J., and Cimento, A.P.: ‘Some practical procedures for the solution of nonlinear finite element equations’, Comput. Meth. Appl. Mech. Eng. 22 (1980), 59–85.

    MATH  Google Scholar 

  426. Broyden, C.G.: ‘A new double-rank minimization algorithm. Notices Amer. Math. Soc. 16 (1969), 670.

    Google Scholar 

  427. Broyden, C.G., Dennis, J.E., and Moré, J.J.: ‘On the local and superlinear convergence of quasi-Newton methods’, J. Inst. Math. Appl 12 (1973), 223–246.

    MathSciNet  MATH  Google Scholar 

  428. Byrd, R.H., and Nocedal, J.: ‘A tool for the analysis of quasi-Newton methods with application to unconstrained minimization’, SIAM J. Numer. Anal. 26 (1989), 727–739.

    MathSciNet  MATH  Google Scholar 

  429. Byrd, R.H., Nocedal, J., and Schnabel, R.B.: ‘Representation of quasi-Newton matrices and their use in limited memory methods’, Math. Progr. 63 (1994), 129–156.

    MathSciNet  MATH  Google Scholar 

  430. Byrd, R.H., Nocedal, J., and Yuan, Y.: ‘Global convergence of a class of quasi-Newton methods on convex problems’, SIAM J. Numer. Anal. 24 (1987), 1171–1190.

    MathSciNet  MATH  Google Scholar 

  431. Dennis, J.E., and Schnabel, R.B.: Numerical Methods for Nonlinear Equations and Unconstrained Optimization, No. 16 in Classics in Applied Math. SIAM (Soc. Industrial Applied Math.), 1996.

    MATH  Google Scholar 

  432. Fletcher, R.: ‘A new approach to variable metric methods’, Comput. J. 13 (1970), 317–322.

    MATH  Google Scholar 

  433. Goldfarb, D.: ‘A family of variable metric methods derived by variational means’, Math. Comp. 24 (1970), 23–26.

    MathSciNet  MATH  Google Scholar 

  434. Kelley, C.T.: Iterative methods for optimization, Vol. 18 of Frontiers in Appl. Math., SIAM (Soc. Industrial Applied Math.), 1999.

    MATH  Google Scholar 

  435. Matthies, H., and Strang, G.: ‘The solution of nonlinear finite element equations’, Internat. J. Numerical Methods Eng. 14 (1979), 1613–1626.

    MathSciNet  MATH  Google Scholar 

  436. Nazareth, J.L.: ‘Conjugate gradient methods less dependent on conjugacy’, SIAM Review 28 (1986), 501–512.

    MathSciNet  MATH  Google Scholar 

  437. Nocedal, J.: ‘Updating quasi-Newton matrices with limited storage’, Math. Comp. 35 (1980), 773–782.

    MathSciNet  MATH  Google Scholar 

  438. Powell, M.J.D.: ‘Some global convergence properties of a variable metric algorithm without exact line searches’, Nonlinear Programming, in R. Cottle and C. Lemke (eds.). Amer. Math. Soc., 1976, pp. 53–72.

    Google Scholar 

  439. Shanno, D.F.: ‘Conditioning of quasi-Newton methods for function minimization, Math. Comp. 24 (1970), 647–657.

    MathSciNet  Google Scholar 

  440. Werner, J.: ‘Über die globale konvergenz von Variable-Metric Verfahren mit nichtexakter Schrittweitenbestimmung’, Numer. Math. 31 (1978), 321–334.

    MathSciNet  MATH  Google Scholar 

  441. Broyden, C.G.: ‘A class of methods for solving nonlinear simultaneous equations’, Math. Comp. 19 (1965), 577–593.

    MathSciNet  MATH  Google Scholar 

  442. Broyden, C.G., Dennis, J.E., and Moré, J.J.: ‘On the local and superlinear convergence of quasi-Newton methods’, J. Inst. Math. Appl. 12 (1973), 223–246.

    MathSciNet  MATH  Google Scholar 

  443. Decker, D.W., Keller, H.B., and Kelley, C.T.: ‘Convergence rates for Newton’s method at singular points’, SIAM J. Numer. Anal. 20 (1983), 296–314.

    MathSciNet  MATH  Google Scholar 

  444. Decker, D.W., and Kelley, C.T.: ‘Sublinear convergence of the chord method at singular points’, Numer. Math. 42 (1983), 147–154.

    MathSciNet  MATH  Google Scholar 

  445. Decker, D.W., and Kelley, C.T.: ‘Broyden’s method for a class of problems having singular Jacobian at the root’, SIAM J. Numer. Anal. 22 (1985), 566–574.

    MathSciNet  MATH  Google Scholar 

  446. Dennis, J.E., and Moré, J.J.: ‘Quasi-Newton methods, methods, motivation and theory’, SIAM Review 19 (1977), 46–89.

    MathSciNet  MATH  Google Scholar 

  447. Dennis, J.E., and Schnabel, R.B.: Numerical Methods for Nonlinear Equations and Unconstrained Optimization, No. 16 in Classics in Applied Math. SIAM (Soc. Industrial Applied Math.), 1996.

    MATH  Google Scholar 

  448. Deuflhard, P., Freund, R.W., and Walter, A.: ‘Fast Secant Methods for the Iterative Solution of Large Nonsymmetric Linear Systems’, Impact of Computing in Science and Engineering 2 (1990), 244–276.

    MATH  Google Scholar 

  449. Engelman, M.S., Strang, G., and Bathe, K.J.: ‘The application of quasi-Newton methods in fluid mechanics’, Internat. J. Numerical Methods Eng. 17 (1981), 707–718.

    MathSciNet  MATH  Google Scholar 

  450. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations, No. 16 in Frontiers in Appl. Math. SIAM (Soc. Industrial Applied Math.), 1995.

    MATH  Google Scholar 

  451. Kelley, C.T., and Sachs, E.W.: ‘A new proof of superlinear convergence for Broyden’s method in Hilbert space’, SIAM J. Optim. 1 (1991), 146–150.

    MathSciNet  MATH  Google Scholar 

  452. Ortega, J.M., and Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Acad. Press, 1970.

    MATH  Google Scholar 

  453. Sherman, J., and Morrison, W.J.: ‘Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix (abstract)’, Ann. Math. Stat. 20 (1949), 621.

    Google Scholar 

  454. Sherman, J., and Morrison, W.J.: ‘Adjustment of an inverse matrix corresponding to a change in one element of a given matrix’, Ann. Math. Stat. 21 (1950), 124–127.

    MathSciNet  MATH  Google Scholar 

  455. Bukhvalov, A.V.: ‘Integral representations of linear operators’, J. Soviet Math. 8 (1978), 129–137.

    Google Scholar 

  456. Dunford, N., and Pettis, J.B.: ‘Linear operators on sum-mable functions’, Trans. Amer. Math. Soc. 47 (1940), 323–392.

    MathSciNet  Google Scholar 

  457. Meyer-Nieberg, P.: Banach lattices, Springer, 1991.

    MATH  Google Scholar 

  458. Schep, A.R.: ‘Kernel operators’, PhD Thesis Univ. Leiden (1977).

    Google Scholar 

  459. Zaanen, A.C.: Riesz spaces, Vol. II, North-Holland, 1983.

    MATH  Google Scholar 

  460. Burnside, W.: Theory of groups of finite order, Cambridge Univ. Press, 1897.

    MATH  Google Scholar 

  461. Burnside, W.: Theory of groups of finite order, second, much changed ed., Cambridge Univ. Press, 1911, Reprinted: Dover, 1955.

    MATH  Google Scholar 

  462. Frobenius, G.: ‘Über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodm’, J. Reine Angew. Math. 101 (1887), 273–299, Also: Gesammelte Abh. II (1968), Springer, 304–330.

    MATH  Google Scholar 

  463. Neumann, Peter M.: ‘A lemma that is not Burnside’s’, Math. Scientist 4 (1979), 133–141.

    Google Scholar 

  464. Neumann, Peter M., Stoy, G.A., and Thompson, E.C.: Groups and geometry, Clarendon Press, 1994.

    MATH  Google Scholar 

  465. Pólya, G.: ‘Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen’, Acta Math. 68 (1937), 145–254.

    Google Scholar 

  466. Redfield, J.H.: ‘The theory of group-reduced distributions’, Amer. J. Math. 49 (1927), 433–455.

    MathSciNet  MATH  Google Scholar 

  467. Wright, E.M.: ‘Burnside’s lemma: a historical note’, J. Combin. Th. B 30 (1981), 89–90.

    MATH  Google Scholar 

  468. Ballmann, W., Gromov, M., and Schroeder, V.: Manifolds of nonpositive curvature, Vol. 61 of Progr. Math., Birkhäuser, 1985.

    MATH  Google Scholar 

  469. Busemann, H.: The geometry of geodesics, Acad. Press, 1955.

    MATH  Google Scholar 

  470. Cheeger, J., and Gromoll, D.: ‘The splitting theorem for manifolds of nonnegative Ricci curvature’, J. Diff. Geom. 6 (1971/72), 119–128.

    MathSciNet  MATH  Google Scholar 

  471. Cheeger, J., and Gromoll, D.: ‘On the structure of complete manifolds of nonnegative curvature’, Ann. of Math. (2) 96 (1972), 413–443.

    MathSciNet  MATH  Google Scholar 

  472. Docquier, F., and Grauert, H.: ‘Leisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten’, Math. Ann. 140 (1960), 94–123.

    MathSciNet  MATH  Google Scholar 

  473. Eberlein, P., and O’Neill, B.: ‘Visibility manifolds’, Pacific J. Math. 46 (1973), 45–109.

    MathSciNet  MATH  Google Scholar 

  474. Greene, R.E., and Wu, H.: ‘On Kahler manifolds of positive bisectional curvature and a theorem of Hartogs’, Abh. Math. Sem. Univ. Hamburg 47 (1978), 171–185, Special issue dedicated to the seventieth birthday of Erich Käler.

    MathSciNet  MATH  Google Scholar 

  475. Gromov, M.: Structures métriques pour les variétés rie-manniennes, Vol. 1 of Textes Mathématiques [Mathematical Texts], CEDIC, 1981, Edited by J. Lafontaine and P. Pansu.

    Google Scholar 

  476. Heintze, E., and Imhof, H.-C.: ‘Geometry of horospheres’, J. Diff. Geom. 12, no. 4 (1977), 481–491 (1978).

    MathSciNet  Google Scholar 

  477. Innami, N.: ‘Differentiability of Busemann functions and total excess’, Math. Z. 180, no. 2 (1982), 235–247.

    MathSciNet  MATH  Google Scholar 

  478. Innami, N.: ‘On the terminal points of co-rays and rays’, Arch. Math. (Basel) 45, no. 5 (1985), 468–470.

    MathSciNet  MATH  Google Scholar 

  479. Kasue, A.: ‘A compactification of a manifold with asymptotically nonnegative curvature’, Ann. Sci. Ecole Norm. Sup. 4 21, no. 4 (1988), 593–622.

    MathSciNet  MATH  Google Scholar 

  480. Shen, Z.: ‘On complete manifolds of nonnegative kth-Ricci curvature’, Trans. Amer. Math. Soc. 338, no. 1 (1993), 289–310.

    MathSciNet  MATH  Google Scholar 

  481. Shiohama, K.: ‘Busemann functions and total curvature’, Invent. Math. 53, no. 3 (1979), 281–297.

    MathSciNet  MATH  Google Scholar 

  482. Shiohama, K.: ‘The role of total curvature on complete non-compact Riemannian 2-manifolds’, Illinois J. Math. 28, no. 4 (1984), 597–620.

    MathSciNet  MATH  Google Scholar 

  483. Shiohama, K.: ‘Topology of complete noncompact manifolds’, Geometry of Geodesies and Related Topics (Tokyo, 1982), Vol. 3 of Adv. Stud. Pure Math. North-Holland, 1984, pp. 423–450.

    Google Scholar 

  484. Siu, Y.T., and Yau, S.T.: ‘Complete Kahler manifolds with nonpositive curvature of faster than quadratic decay’, Ann. of Math. (2) 105, no. 2 (1977), 225–264.

    MathSciNet  MATH  Google Scholar 

  485. Wu, H.: ‘An elementary method in the study of nonnegative curvature’, Acta Math. 142, no. 1–2 (1979), 57–78.

    MathSciNet  MATH  Google Scholar 

  486. Buser, P.: ‘Über den ersten Eigenwert des Laplace-Operators auf kompakten Flächen’, Comment. Math. Helvetici 54 (1979), 477–493.

    MathSciNet  MATH  Google Scholar 

  487. Buser, P.: ‘A note on the isoperimetric constant’, Ann. Sci. Ecole Norm. Sup. 15 (1982), 213–230.

    MathSciNet  MATH  Google Scholar 

  488. Chavel, I.: Riemannian geometry: A modern introduction, Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers and Elliott H. Lieb for “Lieb-Thirring inequalities” and “Thomas-Fermi theory”

About this chapter

Cite this chapter

Hazewinkel, M. (2000). B. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1279-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5378-7

  • Online ISBN: 978-94-015-1279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics