Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1029 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glimm, J., and Jaffe, A.: Quantum field theory and statistical mechanics (a collection of papers), Birkhäuser, 1985.

    Book  MATH  Google Scholar 

  2. Glimm, J., and Jaffe, A.: Quantum physics, second ed., Springer, 1987.

    Book  Google Scholar 

  3. Jorgensen, P.E.T., and Ólafsson, G.: ‘Unitary representations of Lie groups with reflection symmetry’, J. Funct. Anal. 158 (1998), 26–88.

    Article  MathSciNet  Google Scholar 

  4. Osterwalder, K., and Schrader, R.: ‘Axioms for Euclidean Green’s functions’, Comm. Math. Phys. 31/42 (1973/75), 83–112;281–305.

    Google Scholar 

  5. Streater, R.F., and Wightman, A.S.: PCT, spin and statistics, and all that, Benjamin, 1964.

    MATH  Google Scholar 

  6. Wightman, A.S.: ‘Hilbert’s sixth problem: Mathematical treatment of the axioms of physics’, in F.E. Browder (ed.): Mathematical Developments Arising from Hilbert’s Problems, Vol. 28:1 of Proc. Symp. Pure Math., Amer. Math. Soc, 1976, pp. 241–268.

    Google Scholar 

References

  1. Lakshmibai, V., and Reshetikhin, N.: ‘Quantum deformations of flag and Schubert schemes’, C.R. Acad. Sci. Paris 313 (1991), 121–126.

    MathSciNet  MATH  Google Scholar 

  2. Nuomi, M., Dijkhuizen, M.S., and Sugitani, T.: ‘Multivari-able Askey-Wilson polynomials and quantum complex Grass-mannians’, in M.E.H. Insmail et al. (eds.): Special Functions, q-Series and Related Topics, Vol. 14 of Fields Inst. Commun., Amer. Math. Soc, 1997, pp. 167–177.

    Google Scholar 

  3. Šíovíček, P.: ‘Quantum Grassmann manifolds’, Comm. Math. Phys. 158 (1993), 135–153.

    Article  MathSciNet  Google Scholar 

  4. Soibelman, Ya.S.: ‘On the quantum flag manifold’, Funct. Anal. Appl. 26 (1992), 225–227.

    Article  MathSciNet  MATH  Google Scholar 

  5. Taft, E., and Towber, J.: ‘Quantum deformations of flag schemes and Grassmann schemes I. A q-deformation for the shape algebra GL(n)’ J. Algebra 142 (1991), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Chu, C.S., Ho, P.M., and Zumino, B.: ‘The quantum 2-sphere as a complex manifold’, Z. Phys. C 70 (1996), 339–344.

    Article  MathSciNet  Google Scholar 

  2. Noumi, M., and Mimachi, K.: ‘Quantum 2-spheres and big q-Jacobi polynomials’, Comm. Math. Phys. 128 (1990), 521–531.

    Article  MathSciNet  MATH  Google Scholar 

  3. Šíovíček, P.: ‘Quantum line bundles on S 2 and the method of orbits for SU q (2)’, J. Math. Phys. 34 (1993), 1606–1613.

    Article  MathSciNet  Google Scholar 

  4. Podles, P.: ‘Quantum spheres’, Lett. Math. Phys. 14 (1987), 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  5. Podles, P.: ‘Differential calculus on quantum spheres’, Lett. Math. Phys. 18 (1989), 107–119.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sheu, A.J.L.: ‘Quantization of the Poisson SU(2) and its Poisson homogeneous space — the 2-sphere’, Comm. Math. Phys. 135 (1991), 217–232.

    Article  MathSciNet  MATH  Google Scholar 

  7. Woronowicz, S.L.: ‘Twisted SU(2) group. An example of a non-commutative differential calculus’, Publ. RIMS Univ. Kyoto 23 (1987), 117–181.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Broyden, C.G.: ‘A class of methods for solving non-linear simultaneous equations’, Math. Comput. 19 (1965), 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  2. Broyden, C.G.: ‘Quasi-Newton methods and their application to function minimisation’, Math. Comput. 21 (1967), 368–381.

    Article  MathSciNet  MATH  Google Scholar 

  3. Broyden, C.G.: ‘The convergence of a class of double-rank minimization algorithms; the new algorithm’, J. Inst. Math. Appl. 6 (1970), 222–231.

    Article  MathSciNet  MATH  Google Scholar 

  4. Davidon, W.C.: ‘Variable metric method for minimisation’, SIAM J. Optim. 1 (1991), 1–17, Also: Argonne Nat. Lab. Report ANL-5990 (rev.) (1959).

    Article  MathSciNet  MATH  Google Scholar 

  5. Dixon, L.C.W.: ‘Quasi-Newton algorithms generate identical points’, Math. Progr. 2 (1972), 383–387.

    Article  MATH  Google Scholar 

  6. Fletcher, R.: ‘A new approach for variable metric algorithms’, Comput. J. 13 (1970), 317–322.

    Article  MATH  Google Scholar 

  7. Fletcher, R.: Practical methods of optimization, second ed., Wiley, 1986.

    Google Scholar 

  8. Fletcher, R.: ‘An overview of unconstrained optimization’, Dundee Numerical Analysis Report NA/149 (1993).

    Google Scholar 

  9. Fletcher, R., and Powell, M.J.D.: ‘A rapidly convergent descent method for minimisation’, Comput. J. 6 (1963), 163–168.

    MathSciNet  MATH  Google Scholar 

  10. Fletcher, R., and Reeves, C.M.: ‘Function minimization by conjugate gradients’, Comput. J. 7 (1964), 149–154.

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldfarb, D.: ‘A family of variable metric methods derived by variational means’, Math. Comput. 24 (1970), 23–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. Oren, S.S., and Luenberger, D.G.: ‘Self-scaling variable metric (SSVM) algorithms I’, Management Science 20 (1974), 845–862.

    Article  MathSciNet  MATH  Google Scholar 

  13. Powell, M.J.D.: ‘How bad are the BFGS and DFP methods when the objective function is quadratic?’, Math. Progr. 34 (1987), 34–47.

    Article  Google Scholar 

  14. Shanno, D.F.: ‘Conditioning of quasi-Newton methods for function minimization’, Math. Comput. 24 (1970), 647–656.

    Article  MathSciNet  Google Scholar 

References

  1. Chuaqui, M., and Osgood, B.: ‘Weak Schwarzians, bounded hyperbolic distortion, and smooth quasi-symmetric functions’, J. d’Anal. Math. 68 (1996), 209–252.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gel’fand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., and Thibon, J.-Y.: ‘Noncommutative symmetric functions’, Adv. Math. 112 (1995), 218–348.

    Article  MathSciNet  Google Scholar 

  3. Gessel, I.M.: ‘Multipartite P-partitions and inner product of skew Schur functions’, Contemp. Math. 34 (1984), 289–301.

    Article  MathSciNet  Google Scholar 

  4. Gessel, I.M., and Reutenauer, Ch.: ‘Counting permutations with given cycle-structure and descent set’, J. Combin. Th. A 64 (1993), 189–215.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hazewinkel, M.: ‘The algebra of quasi-symmetric functions is free over the integers’, Preprint CWI (Amsterdam) and ICTP (Trieste) (1999).

    Google Scholar 

  6. Malvenuto, C., and Reutenauer, Ch.: ‘Duality between quasi-symmetric functions and the Solomon descent algebra’, J. Algebra 177 (1994), 967–982.

    Article  MathSciNet  Google Scholar 

  7. Solomon, L.: ‘A Mackey formula in the group ring of a Cox-eter group’, J. Algebra 41 (1976), 255–268.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Drinfel’d, V.G.: ‘Quantum groups’, in A. Gleason (ed.): Proc. Internat. Math. Congress, Amer. Math. Soc, 1987, pp. 798–820.

    Google Scholar 

  2. Faddeev, L.D., Reshetikhin, N.Yu., and Takhtajan, L.A.: ‘Quantization of Lie groups and Lie algebras’, Leningrad Math. J. 1 (1990), 193–225.

    MathSciNet  MATH  Google Scholar 

  3. Majid, S.: ‘Quasitriangular Hopf algebras and Yang-Baxter equations’, Internat. J. Modern Physics A 5, no. 1 (1990), 1–91.

    Article  MathSciNet  MATH  Google Scholar 

  4. Majid, S.: Foundations of quantum group theory, Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

References

  1. Gnedenko, B.W., and König, D. (eds.): Handbuch der Bedienungstheorie II, Akad. Verlag Berlin, 1984, p. Chap. 6.

    MATH  Google Scholar 

  2. Jaiswal, N.K.: Priority queues, Acad. Press, 1968.

    MATH  Google Scholar 

  3. Kleinrock, L.: Queueing systems 2: Computer applications, Wiley, 1976, p. Chaps. 3 and 4.

    Google Scholar 

  4. Takagi, H.: Analysis of polling systems, MIT, 1986.

    Google Scholar 

  5. Takagi, H.: Queueing analysis 1: A foundation of performance evaluation: Vacation and priority systems, North-Holland, 1991, p. Chap. 3.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers and Elliott H. Lieb for “Lieb-Thirring inequalities” and “Thomas-Fermi theory”

About this chapter

Cite this chapter

Hazewinkel, M. (2000). Q. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1279-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5378-7

  • Online ISBN: 978-94-015-1279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics