Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1030 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boussinesq, J.: Théorie analytique de la chaleur, Gauthier-Villars, 1903.

    Google Scholar 

  2. Chandrasekar, S.: Hydrodynamic and hydromagnetic stability, Oxford Univ. Press, 1961.

    Google Scholar 

  3. Foias, C., Manley, O., and Temam, R.: ‘Attractors for the Bénard problem: existence and physical bounds on their fractal dimension’, Nonlinear Anal. Theory Methods Appl. 11 (1987), 939–967.

    Article  MathSciNet  MATH  Google Scholar 

  4. Oberbeck, A.: ‘Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen’, Ann. Phys. Chem. VII (1879), 271–292.

    Article  Google Scholar 

  5. Rajagopal, K.R., Ruzicka, M., and Srinivasa, A.R.: ‘On the Oberbeck-Boussinesq approximation’, Math. Meth. Appl. Sci. 6 (1996), 1157–1167.

    Article  MathSciNet  MATH  Google Scholar 

  6. Shenoy, A.V., and Mashelkar, R.A.: ‘Thermal convention in non-Newtonian fluids’, in J.P. Hartnett and T.F. Irvine (eds.): Advances in Heat Transfer, Vol. 15, Acad. Press, 1982, pp. 143–225.

    Chapter  Google Scholar 

  7. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, second ed., Springer, 1997.

    MATH  Google Scholar 

  8. Koornwinder, T.H.: ‘Jacobi functions and analysis on non-compact semisimple Lie groups’: Special Functions: Group Theoretical Aspects and Applications, Reidel, 1984, pp. 1–85.

    Google Scholar 

  9. Olevskii, M.N.: ‘On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function’, Dokl. Akad. Nauk SSSR 69, no. 1 (1949), 11–14. (In Russian.)

    MathSciNet  Google Scholar 

  10. Yakubovich, S.B.: Index transforms, World Sci., 1996, p. Chap. 7.

    Book  MATH  Google Scholar 

  11. Alexander, J.W.: ‘A lemma on systems of knotted curves’, Proc. Nat. Acad. Sci. USA 9 (1923), 93–95.

    Article  Google Scholar 

  12. Durfee, A.H., and Lawson Jr., H.B.: ‘Fibered knots and foliations of highly connected manifolds’, Invent. Math. 17 (1972), 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawson, T.: ‘Open book decompositions for odd dimensional manifolds’, Topology 17 (1978), 189–192.

    Article  MathSciNet  MATH  Google Scholar 

  14. Myers, R.: ‘Open book decompositions of 3-manifolds’, Proc. Amer. Math. Soc. 72 (1978), 397–402.

    MathSciNet  MATH  Google Scholar 

  15. Rolfsen, D.: Knots and links, Publish or Perish, 1976.

    MATH  Google Scholar 

  16. Thurston, W.P., and Winkelnkemper, H.E.: ‘On the existence of contact forms’, Proc. Amer. Math. Soc. 52 (1975), 345–347.

    Article  MathSciNet  MATH  Google Scholar 

  17. Winkelnkemper, H.E.: ‘Manifolds as open books’, Bull. Amer. Math. Soc. 79 (1973), 45–51.

    Article  MathSciNet  MATH  Google Scholar 

  18. Cerda, J., Hudzik, H., Kamińska, A., and Mastylo, M.: ‘Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces’, Positivity 2 (1998), 311–337.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hudzik, H., Kamińska, A., and Mastylo, M.: ‘Geometric properties of some Calderón-Lozanovskii and Orlicz-Lorentz spaces’, Houston J. Math. 22 (1996), 639–663.

    MathSciNet  MATH  Google Scholar 

  20. Kamińska, A.: ‘Extreme points in Orlicz-Lorentz spaces’, Arch. Math. 55 (1990), 173–180.

    Article  MATH  Google Scholar 

  21. Kamińska, A.: ‘Some remarks on Orlicz-Lorentz spaces’, Math. Nachr. 147 (1990), 29–38.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamińska, A.: ‘Uniform convexity of generalized Lorentz spaces’, Arch. Math. 56 (1991), 181–188.

    Article  MATH  Google Scholar 

  23. Kamińska, A., Lin, P.K., and Sun, H.: ‘Uniformly normal structure of Orlicz-Lorentz spaces’: Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Columbia, Missouri, 1994), Vol. 175 of Lecture Notes Pure Appl. Math., M. Dekker, 1996, pp. 229–238.

    Google Scholar 

  24. Llndenstrauss, J., and Tzafriri, L.: Classical Banach spaces I–II, Springer, 1977–1979.

    Google Scholar 

  25. Maligranda, L.: ‘Indices and interpolation’, Dissert. Math. 234 (1985).

    Google Scholar 

  26. Montgomery-Smith, St.: ‘Boyd indices of Orlicz-Lorentz spaces’: Function Spaces (Edwardsville, IL, 1994), Vol. 172 of Lecture Notes Pure Appl. Math., M. Dekker, 1995, pp. 321–334.

    Google Scholar 

  27. Raynaud, Y.: ‘On Lorentz-Sharpley spaces’: Proc. Workshop on Interpolation Spaces and Related Topics, Vol. 5 of Israel Math. Conf. Proc, 1992, pp. 207–228.

    Google Scholar 

  28. Torchinsky, A.: ‘Interplation of operators and Orlicz classes’, Studia Math. 59 (1976), 177–207.

    MathSciNet  MATH  Google Scholar 

  29. Adams, R.A.: Sobolev spaces, Acad. Press, 1975.

    MATH  Google Scholar 

  30. Boyd, D.W.: ‘Indices for the Orlicz spaces’, Pacific J. Math. 38 (1971), 315–323.

    MathSciNet  MATH  Google Scholar 

  31. Donaldson, T.: ‘Nonlinear elliptic boundary-value problems in Orlicz-Sobolev spaces’, J. Diff. Eq. 10 (1971), 507–528.

    Article  MathSciNet  Google Scholar 

  32. Donaldson, T.: ‘Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems’, J. Diff. Eq. 16 (1974), 201–256.

    Article  MathSciNet  MATH  Google Scholar 

  33. Edmunds, D.E., and Triebel, H.: ‘Logarithmic Sobolev spaces and their applications to spectral theory’, Proc. London Math. Soc. 71, no. 3 (1995), 333–371.

    Article  MathSciNet  MATH  Google Scholar 

  34. Fougères, A.: ‘Approximation dans les espaces de Sobolev et de Sobolev-Orlicz’, C.R. Acad. Sci. Paris Ser. A 274 (1972), 479–482.

    MathSciNet  MATH  Google Scholar 

  35. Gossez, J.-P.: ‘Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients’, Trans. Amer. Math. Soc. 190 (1974), 163–205.

    Article  MathSciNet  MATH  Google Scholar 

  36. Gossez, J.-P., and Mustonen, V.: ‘Variational inequalities in Orlicz-Sobolev spaces’, Nonlinear Anal. Theory Meth. Appl. 11 (1987), 379–392.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gustavsson, J., and Peetre, J.: ‘Interpolation of Orlicz spaces’, Studia Math. 60 (1977), 33–59.

    MathSciNet  MATH  Google Scholar 

  38. Hudzik, H.: ‘The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces W k m (Ω)’, Comment. Math. Helvetici 21 (1979), 315–324.

    MathSciNet  MATH  Google Scholar 

  39. Krasnosel’skii, M.A., and Rutitskii, Ya.B.: Convex functions and Orlicz spaces, Noordhoff, 1961. (Translated from the Russian.)

    Google Scholar 

  40. Kufner, A., John, O., and Fučík, S.: Function spaces, Acad. Prague, 1977.

    MATH  Google Scholar 

  41. Lacroix, M.-Th.: ‘Espaces d’interpolation et de traces des espaces de Sobolev-Orlicz d’ordre 1’, C.R. Acad. Sci. Paris Ser. A 280 (1975), 271–274.

    MathSciNet  MATH  Google Scholar 

  42. Landes, R., and Mustonen, V.: ‘Pseudo-monotone mappings in Sobolev-Orlicz spaces and nonlinear boundary value problems on unbounded domains’, J. Math. Anal. Appl. 88 (1982), 25–36.

    Article  MathSciNet  MATH  Google Scholar 

  43. Musielak, J.: Orlicz spaces and modular spaces, Vol. 1034 of Lecture Notes Math., Springer, 1983.

    MATH  Google Scholar 

  44. Nakano, H.: Modulared semi-ordered linear spaces, Maruzen, 1950.

    MATH  Google Scholar 

  45. Palmieri, G.: ‘Alcune disuguaglianze per derivate intermedie negli spazi di Orlicz-Sobolev e applicazioni’, Rend. Accad. Sci. Fis. Mat. IV. Ser., Napoli 46 (1979), 633–652. (In Italian.)

    MathSciNet  MATH  Google Scholar 

  46. Vuillermot, P.A.: ‘Hölder-regularity for the solutions of strongly nonlinear eigenvalue problems on Orlicz-Sobolev spaces’, Houston J. Math. 13 (1987), 281–287.

    MathSciNet  MATH  Google Scholar 

  47. Zaanen, A.C.: Linear analysis, Noordhoff, 1953.

    MATH  Google Scholar 

  48. Arnold, V.I., and Avez, A.: Ergodic problems of classical mechanics, Benjamin, 1968.

    Google Scholar 

  49. Mané, R. (ed.): Ergodic theory and differentiate dynamics, Springer, 1987.

    Google Scholar 

  50. Ornstein, D.S.: Ergodic theory, randomness, and dynamical systems, Yale Univ. Press, 1974.

    MATH  Google Scholar 

  51. Ornstein, D.S., and Weiss, B.: ‘Statistical properties of chaotic systems’, Bull. Amer. Math. Soc. 24, no. 1 (1991).

    Google Scholar 

  52. Randolph, D.: Fundamentals of measurable dynamics — Ergodic theory of lebesgue spaces, Oxford Univ. Press, to appear.

    Google Scholar 

  53. Shields, P.: The theory of Bernoulli shifts, Univ. Chicago Press, 1973.

    MATH  Google Scholar 

  54. Sinai, Ya.G. (ed.): Dynamical systems II, Springer, 1989.

    MATH  Google Scholar 

  55. Smorodinsky, M.: Ergodic theory. Entropy, Vol. 214 of Lecture Notes Math., Springer, 1970.

    Google Scholar 

  56. Blažíć, N., Bokan, N., and Gilkey, P.: ‘A note on Osserman Lorentzian manifolds’, Bull. London Math. Soc. 29 (1997), 227–230.

    Article  MathSciNet  Google Scholar 

  57. Chi, C.S.: ‘A curvature characterization of certain locally rank one symmetric spaces’, J. Diff. Geom. 28 (1988), 187–202.

    MathSciNet  MATH  Google Scholar 

  58. Dotti, I., Druetta, M., and Gilkey, P.: ‘Algebraic curvature tensors which are p Osserman’, Preprint (1999).

    Google Scholar 

  59. Garcia-Rio, E., Kupeli, D.N., and Vázquez-Abal, M.E.: ‘On a problem of Osserman in Lorentzian geometry’, Diff. Geom. Appl. 7 (1997), 85–100.

    Article  MATH  Google Scholar 

  60. Gilkey, P.: ‘Manifolds whose curvature operator has constant eigenvalues at the basepoint’, J. Geom. Anal. 4 (1994), 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  61. Osserman, R.: ‘Curvature in the eighties’, Amer. Math. Monthly 97 (1990), 731–756.

    Article  MathSciNet  MATH  Google Scholar 

  62. Stanilov, G., and Videv, V.: ‘Four dimensional pointwise Osserman manifolds’, Abh. Math. Sem. Univ. Hamburg 68 (1998), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  63. Stavrov, I.: ‘A note on generalized Osserman manifolds’, Preprint (1998).

    Google Scholar 

  64. Brown, M.R.: ‘Ovoids of PG(3, q), q even, with a conic section’, J. London Math. Soc. (to appear).

    Google Scholar 

  65. Hirschfeld, J.W.P.: Finite projective spaces of three dimensions, Oxford Univ. Press, 1985.

    MATH  Google Scholar 

  66. Hirschfeld, J.W.P., and Thas, J.A.: General Galois geometries, Oxford Univ. Press, 1991.

    MATH  Google Scholar 

  67. Maldeghem, H. Van: Generalized polygons, Birkhäuser, 1998.

    Book  MATH  Google Scholar 

  68. O’Keefe, C.M.: ‘Ovoids in PG(3, q): a survey’, Discrete Math. 151 (1996), 175–188.

    Article  MathSciNet  MATH  Google Scholar 

  69. Thas, J.A.: ‘Generalized Polygons’, in F. Buekenhout (ed.): Handbook of Incidence Geometry, Buildings and Foundations, Elsevier, 1995, pp. Chap. 9; 295–348.

    Chapter  Google Scholar 

  70. Thas, J.A.: ‘Projective geometry over a finite field’, in F. Buekenhout (ed.): Handbook of Incidence Geometry, Buildings and Foundations, Elsevier, 1995, pp. Chap. 7; 295–348.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers and Elliott H. Lieb for “Lieb-Thirring inequalities” and “Thomas-Fermi theory”

About this chapter

Cite this chapter

Hazewinkel, M. (2000). O. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1279-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5378-7

  • Online ISBN: 978-94-015-1279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics