Skip to main content

Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization

  • Chapter
Conférence Moshé Flato 1999

Part of the book series: Mathematical Physics Studies ((MPST,volume 21/22))

Abstract

For arbitrary compact quantizable Kahler manifolds it is shown how a natural formal deformation quantization (star-product) can be obtained via Berezin-Toeplitz operators. Results on their semi-classical behaviour (their asymptotic expansion) due to Bordemann, Meinrenken, and Schlichenmaier are used in an essential manner. It is shown that the star-product is null on constants and fulfills parity. A trace is constructed and the relation to deformation quantization by geometric quantization is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Quantum mechanics as a deformation of classical mechanics, Lett. Math. Phys.1 (1975/77), 521–530;

    Article  MathSciNet  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Deformation theory and quantization, Part I and II, Ann. Physics 111(1978), 61–110, 111–151.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berceanu, St. and Schlichenmaier, M.: Coherent state embeddings, polar divisors and Cauchy formulas,preprint math.QA/9902066, to appear in J. Geom. Phys.

    Google Scholar 

  4. Berezin, F.A.: Quantization, Math. USSR-Izv. 8(1974), 1109–1165;

    Article  Google Scholar 

  5. Berezin, F.A.: Quantization in complex symmetric spaces, Math. USSR-Izv. 9(1975), 341–379.

    Article  Google Scholar 

  6. Bertelson, M., Cahen, M., and Gutt, S.: Equivalence of star products, Classical Quantum Gravity 14(1997), A93-A107.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bordemann, M., Hoppe, J., Schaller, P., and Schlichenmaier, M.: gl(∞) and geometric quantization, Comm. Math. Phys. 138(1991), 209–244.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordemann, M., Meinrenken, E., and Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and gl(n),n→∞ limits, Comm. Math. Phys. 165(1994), 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bordemann, M. and Waldmann, St.: A Fedosov star product of the Wick type for Kahler manifolds, Lett. Math. Phys. 41(1997), 243–253.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borthwick, D., Paul, D., and Uribe, A.: Semiclassical spectral estimates for Toeplitz operators, Ann. Inst. Fourier, Grenoble 48(1998), 1189–1229.

    Article  MathSciNet  MATH  Google Scholar 

  11. Boutet de Monvel, L. and Guillemin, V.: The spectral theory of Toeplitz operators, Ann. Math. Studies, Nr.99, Princeton University Press, Princeton, 1981.

    Google Scholar 

  12. Cahen, M., Gutt, S., and Rawnsley, J.: Quantization of Kahler manifolds II, Trans. Amer. Math. Soc. 337(1993), 73–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. De Wilde, M. and Lecomte, P.: Existence of star products and of formal deformations of the Poisson-Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7(1983), 487–496.

    Article  MathSciNet  MATH  Google Scholar 

  14. Deligne, P.: Letter to Bordemann, Meinrenken and Schlichenmaier (March 1994). Answer by Meinrenken, 1994.

    Google Scholar 

  15. Deligne, P.: Déformation de l’algèbre des fonctions d’une variété symplectique: Comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.) 1(1995), 667–697.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fedosov, B.V.: Deformation quantization and index theory, Akademie Verlag, Berlin, 1996.

    MATH  Google Scholar 

  17. Fedosov, B.V.: Deformation quantization and asymptotic operator representation, Funktional Anal. i. Prilozhen. 25(1990), 184–194;

    Article  MathSciNet  Google Scholar 

  18. Fedosov, B.V.: A simple geometric construction of deformation quantization, J. Dijf. Geom. 40(1994), 213–238.

    MathSciNet  MATH  Google Scholar 

  19. Guillemin, V.: Some classical theorems in spectral theory revisited, in: L. Hörmander, (ed.), Seminars on singularities of solutions of linear partial differential equations, Ann. of Math. Stud., 91, Princeton University Press, Princeton, NJ, 1979, pp. 219–259.

    Google Scholar 

  20. Guillemin, V.: Star products on pre-quantizable symplectic manifolds, Lett. Math. Phys. 35(1995), 85–89.

    Article  MathSciNet  MATH  Google Scholar 

  21. Karabegov, A.: Deformation quantization with separation of variables on a Kahler manifold, Comm. Math. Phys. 180(1996), 745–755.

    Article  MathSciNet  MATH  Google Scholar 

  22. Karabegov, A. and Schlichenmaier, M.: Identification of Berezin-Toeplitz deformation quantization, in preparation.

    Google Scholar 

  23. Klimek, S. and Lesniewski, A., Quantum Riemann surfaces: II. The discrete series, Lett. Math. Phys. 24(1992), 125–139.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kontsevich, M.: Deformation quantization of Poisson manifolds I, preprint q-alg/9709040.

    Google Scholar 

  25. Landsman, N.P.: Mathematical topics between classical and quantum mechanics, Springer, Berlin, Heidelberg, New York, 1998.

    Book  Google Scholar 

  26. Moreno, C.: *-products on some Kahler manifolds, Lett. Math. Phys.11 (1986), 361–372.

    Article  MathSciNet  MATH  Google Scholar 

  27. Moreno, C. and Ortega-Navarro, P.: *-products on D l(C), S 2and related spectral analysis, Lett. Math. Phys. 7(1983), 181–193.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mumford, D.: Complex projective varieties, Springer, Berlin, Heidelberg, New York, 1976.

    Google Scholar 

  29. Nest, R. and Tsygan, B.: Algebraic index theory, Comm. Math. Phys. 172(1995), 223–262;

    Article  MathSciNet  MATH  Google Scholar 

  30. Nest, R. and Tsygan, B.: Algebraic index theory for families, Adv. Math. 113(1995), 151–205.

    Article  MathSciNet  MATH  Google Scholar 

  31. Omori, H., Maeda, Y, and Yoshioka, A.: Weyl manifolds and deformation quantization, Adv. Math. 85(1991), 224–255;

    Article  MathSciNet  MATH  Google Scholar 

  32. Omori, H., Maeda, Y, and Yoshioka, A.: Existence of closed star-products, Lett. Math. Phys. 26(1992), 284–294.

    Article  MathSciNet  Google Scholar 

  33. Reshetikhin, N. and Takhtajan, L.:Deformation quantization of Kahler manifolds, preprint math/9907171.

    Google Scholar 

  34. Rieffel, M.A.: Deformation quantization and operator algebras, in: W. Arveson and R. Douglas, (eds.), Operator theory: Operator algebras and applications, Proc. Sympos. Pure Math., 51, Amer. Math. Soc., Providence, RI, 1990, pp. 411–423.

    Google Scholar 

  35. Rieffel, M.A.: Questions on quantization, in: Liming Ge et al., (eds.), Operator algebras and operator theory (Shanghai 1997), Contemp. Math., 228, Amer. Math. Soc, Providence, RI, 1998, pp. 315–326.

    Chapter  Google Scholar 

  36. Schlichenmaier, M.: Berezin-Toeplitz quantization of compact Kahler manifolds, in: A. Strasburger et al. (eds.), Quantization, Coherent States and Poisson Structures, Proc. XlV’th Workshop on Geometric Methods in Physics (Bialowieza 1995), Polish Scientific Publisher, Warsaw, 1998, pp. 101–115 (q-alg/9601016).

    Google Scholar 

  37. Schlichenmaier, M.: Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin-Toeplitz-Quantisierung und globale Algebren der zweidimensionalen konformen Feldtheorie, Mannheim, 1996.

    Google Scholar 

  38. Schlichenmaier, M.: Deformation quantization of compact Kahler manifolds via Berezin-Toeplitz operators, in: H.-D. Doebner, P Nattermann, and W. Scherer, (eds.), Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics (Goslar 1996), World Scientific, Singapore, 1997, pp. 396–400.

    Google Scholar 

  39. Schlichenmaier, M.: Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kahler manifolds, preprint math.QA/9902066, to appear in Rep. on Math. Phys.

    Google Scholar 

  40. Tuynman, G.M.: Quantization: Towards a comparison between methods, J. Math. Phys. 28(1987), 2829–2840.

    Article  MathSciNet  MATH  Google Scholar 

  41. Weinstein, A. and Xu, P.: Hochschild cohomology and characteristic classes for star-products, in: A. Khovanskij et al., (eds.), Geometry and differential equations, Amer. Math. Soc. Transi. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, pp. 177–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schlichenmaier, M. (2000). Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization. In: Dito, G., Sternheimer, D. (eds) Conférence Moshé Flato 1999. Mathematical Physics Studies, vol 21/22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1276-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1276-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5551-4

  • Online ISBN: 978-94-015-1276-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics