Skip to main content

Remarks on the zeta-regularized determinant of differential operators

  • Chapter
Conférence Moshé Flato 1999

Part of the book series: Mathematical Physics Studies ((MPST,volume 21/22))

  • 415 Accesses

Abstract

It is shown that the equalities det \( \left( {\not D + im} \right) = \det \left( {\not D - im} \right) = \sqrt {\det \left( {{{\not D}^2} + {m^2}} \right)} \), where is the massless Dirac operator, hold if and only if: (i) det( + im) and det( - im) are defined by using the symmetry property of the spectrum of D̸; (ii) Z(D̸ 2 + m 2, 0) is an even integer (the sign of the square root above is positive if Z(D̸ 2 + m 2,0) is divisible by 4, and negative otherwise). On the other hand, the equality \( \left| {\det \left( {\not D \pm im} \right)} \right| = \sqrt {\det \left( {{{\not D}^2} + {m^2}} \right)} \) is always holding. It is also shown, by applying the standard definition of zeta-determinant, that det(D̸ + im) is not equal to det( - im) in general. In order to show this fact, a variational formula for det(D + m) with respect to m is derived for general self-adjoint operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada, A.: Spectral invariants and geometry of mapping spaces, in: B. Booss-Bavnbek and K. Wojciechowski, (eds.), Geometric aspects of partial differential equations (Roskilde 1998), Contemp. Math., 242, Amer. Math. Soc., Providence, RI, 1999, pp. 189–202.

    Chapter  Google Scholar 

  2. Booss-Bavnbek, B. and Wojciechowski, K.: Elliptic boundary problems for Dirac operators, Birkhäuser Boston, Inc., Boston, MA, 1993.

    Book  MATH  Google Scholar 

  3. Elizalde, E.: On the concept of determinant for the differential operators of quantum physics, JEEP 9907 (1999) 015.

    Google Scholar 

  4. Elizalde, E., Cognola, G., and Zerbini, S.: Applications in physics of the multiplicative anomaly formula involving some basic differential operators, Nucl. Physics B 532 (1998), 407–428.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilkey, P.: The geometry of spherical space form groups, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.

    MATH  Google Scholar 

  6. McKeon, D. G. C. and Schubert, C.: A new approach to axial vector model calculations, Phys. Lett. B 440 (1998), 101–107.

    Article  Google Scholar 

  7. Okikiolu, K.: The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J. 79 (1995), 687–722.

    Article  MathSciNet  MATH  Google Scholar 

  8. Okikiolu, K.: The multipilicative anomaly for determinants of elliptic operators, Duke Math. J. 79 (1995), 723–750.

    Article  MathSciNet  MATH  Google Scholar 

  9. Scott, S. and Wojciechowski, K.: ζ-determinant and the Quillen determinant on the Grassmannian of elliptic self-adjoint boundary conditions, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 139–144.

    Article  MathSciNet  MATH  Google Scholar 

  10. Shovkovy, I. A.: Derivative expansion of the one-loop effective action in QED, in: V. Alexiades and G. Siopsis, (eds.), Trends in mathematical physics (Knoxville, 1998), AMS/IP Stud. Adv. Math., 13, Amer. Math. Soc., Providence, RI, 1999, pp. 467–474.

    Google Scholar 

  11. Cognola, G. Elizalde, E., and Zerbini, S.: Dirac functional determinants in terms of the eta invariant and the noncommutative residue, preprint hep-th/9910038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Asada, A. (2000). Remarks on the zeta-regularized determinant of differential operators. In: Dito, G., Sternheimer, D. (eds) Conférence Moshé Flato 1999. Mathematical Physics Studies, vol 21/22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1276-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1276-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5551-4

  • Online ISBN: 978-94-015-1276-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics