Skip to main content

Star-products, spectral analysis, and hyperfunctions

  • Chapter
Conférence Moshé Flato 1999

Part of the book series: Mathematical Physics Studies ((MPST,volume 21/22))

  • 410 Accesses

Abstract

We study the ⋆-exponential function U(t;X) of any element X in the affine symplectic Lie algebra of the Moyal ⋆-product on the symplectic manifold (ℝ × ℝ;ω). When X is a compact element, a natural specific candidate for U (t;X) to be the exponential function is suggested by the study we make in the non-compact case. U (t;X) has singularities in the t variable. The analytic continuation U(z;X),z = t + iy, defines two boundary values δ+ U (t;X) = limy↓0 U(z;X) and δ-(t;X) = limy↑0 U(z; X). δ+ U (t;X) is a distribution while δ- U (t;X) is a Beurling-type, Gevrey-class s — 2 ultradistribution. We compute the Fourier transforms in t of δ± U (t;X). Both Fourier spectra are discrete but different (e.g. opposite in sign for the harmonic oscillator). The Fourier spectrum of δ+ U(t;X) coincides with the spectrum of the self adjoint operator in the Hilbert space L 2(ℝ) whose Weyl symbol is X. Only the boundary value δ+ U(t;X) should be considered as the ⋆-exponential function for the element X, since δ- U(t;X) has no interpretation in the Hilbert space L 2(ℝ).

Programa Praxis XXI 2 /2.1/MAT/458/94

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avez, A. and Lichnerowicz, A.: Dérivations et premier groupe de cohomologie pour des algèbres de Lie attachées à une variété symplectique, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), 113–118.

    MathSciNet  MATH  Google Scholar 

  2. Basait, H., Flato, M., Lichnerowicz, A., and Sternheimer, S.: Deformation theory applied to quantization and statistical mechanics, Lett. Math. Phys. 8 (1984), 483–494.

    Article  MathSciNet  Google Scholar 

  3. Basait, H. and Lichnerowicz, A.: Conformai symplectic geometry, deformations, rigidity and geometrical (KMS) conditions, Lett. Math. Phys. 10 (1985), 167–177.

    Article  MathSciNet  Google Scholar 

  4. Bayen, E, Flato, M, Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Deformation theory and quantization I. Deformations of symplectic structures, Ann. Physics 111 (1978), 61–110.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Deformation theory and quantization II. Physical applications, Ann. Physics 111 (1978), 111–151.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayen, F. and Maillard, J.-M.: Star exponentials of the elements of the inhomogeneous symplectic Lie algebra, Lett. Math. Phys. 6 (1982), 481–497.

    Article  MathSciNet  Google Scholar 

  7. Cahen, M, Flato, M, Gutt, S., and Sternheimer, D.: Do different deformations lead to the same spectrum? J. Geom. Phys. 2 (1985), 35–48.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelfand, I. M. and Shilov, G. E.: Generalized functions, Vol. 1 and 2, Academic Press, New York-London, 1964 and 1968.

    Google Scholar 

  9. Kammerer, J.-B.: Analysis of the Moyal product in a flat space, J. Math. Phys. 27 (1986), 529–535.

    Article  MathSciNet  Google Scholar 

  10. Komatsu, H.: Hyperfunctions and linear partial differential equations, in: Hyperfunctions and pseudo-differential equations, (Katata, 1971), Lecture Notes in Math., Vol. 287, Springer, Berlin, 1973, pp. 180–191.

    Chapter  Google Scholar 

  11. Komatsu, H.: Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 20, (1973), 25–105;

    MathSciNet  MATH  Google Scholar 

  12. Komatsu, H.: Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. part II, 24 (1977), 607–628;

    MathSciNet  MATH  Google Scholar 

  13. Komatsu, H.: Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. part III, 29 (1982), 653–717.

    MathSciNet  MATH  Google Scholar 

  14. Kaneko, A.: Introduction to hyperfunctions, Kluwer Academic Publishers, Dordrecht, 1988.

    MATH  Google Scholar 

  15. Kawai, K.: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sei. Univ. Tokyo, Sect. IA Math. 17 (1970), 467–517.

    MATH  Google Scholar 

  16. Maillard, J.-M.: On the twisted convolution product and the Weyl transformation of tempered distributions, J. Geom. Phys. 3 (1986), 230–261.

    Article  MathSciNet  Google Scholar 

  17. Martineau, A.: Distributions et valeurs au bord des fonctions holomorphes, Theory of distributions (Lisbon, 1964), Inst. Gulbenkian Ciencia, Lisbon, 1964, pp. 193–326.

    Google Scholar 

  18. Martineau, A.: Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 11 (1963), 1–164.

    Article  MathSciNet  MATH  Google Scholar 

  19. Meise, R.: Representation of distributions and ultradistributions by holomorphic functions, in: Functional analysis: surveys and recent results (Paderborn, 1976), North-Holland Mathematical Studies 27, North-Holland, Amsterdam, 1977, pp. 189–208.

    Chapter  Google Scholar 

  20. Moreno, C: Produitset analyse spectrale, in: Journées Relativistes, Grenoble, 1981.

    Google Scholar 

  21. Moreno, C. and Pereira da Silva, J. A.: The theory of products, preprint Universidade de Coimbra, Portugal 1980.

    Google Scholar 

  22. Omori, H., Maeda, Y, Miyazaki, N., and Yoshioka, A.: Singular systems of exponential functions, to be published in the proceedings of the workshop on noncommutative differential geometry and its applications to physics, Shonan Kokusaimura, May 1999. Math. Phys. Studies, Kluwer Acad. Publ., Dordrecht, 2000.

    Google Scholar 

  23. Sansone, G.: Orthogonal functions, Interscience Publishers, Inc., New York, 1959.

    MATH  Google Scholar 

  24. Schwartz, L.: Théorie des distributions à valeurs vectorielles I, Ann. Inst. Fourier. Grenoble 7 (1957), 1–141;

    Article  MathSciNet  MATH  Google Scholar 

  25. Schwartz, L.: Théorie des distributions à valeurs vectorielles I, Ann. Inst. Fourier. Grenoble part II, 8 (1958), 1–209.

    Article  MathSciNet  MATH  Google Scholar 

  26. Slater, L. J.: Confluent hypergeometric functions, Cambridge University Press, New York, 1960.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moreno, C., da Silva, J.A.P. (2000). Star-products, spectral analysis, and hyperfunctions. In: Dito, G., Sternheimer, D. (eds) Conférence Moshé Flato 1999. Mathematical Physics Studies, vol 21/22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1276-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1276-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5551-4

  • Online ISBN: 978-94-015-1276-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics