Skip to main content

The SPEG Mass Measurement Program at GANIL

  • Conference paper
Atomic Physics at Accelerators: Mass Spectrometry

Abstract

The measurement of masses (or binding energy) of nuclei far from stability is of fundamental interest for our understanding of nuclear structure. Their knowledge over a broad range of the nuclear chart is an excellent and severe test of nuclear models. This is why considerable experimental and theoretical efforts have been and are invested in this domain. Here we want to give a description of direct mass measurements combining high-resolution time-of-flight determinations and accurate momentum measurements in a spectrometer. This very fast and direct method was developed at GANIL with the high-resolution spectrometer SPEG. The mass measurements realised and scheduled provide important first indications of new regions of deformation or shell closures very far from stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi, L. et al., Nuclear Instrum. Methods A 276 (1989), 509.

    Article  ADS  Google Scholar 

  2. Tarasov, O. et al., http://www.ganil.fr/lise/proglise.html.

  3. Winger, J. et al., Nuclear Instrum. Methods B 70 (1992), 380.

    Article  ADS  Google Scholar 

  4. Joubert, A., IEEE 1 (1991).

    Google Scholar 

  5. Chattier, M. et al., Nuclear Phys. A 637 (1998), 3.

    Article  ADS  Google Scholar 

  6. Wouters, J. M. et al., Nuclear Instrum. Methods A 240 (1985), 77.

    Article  ADS  Google Scholar 

  7. Gillibert, A. et al., Phys. Lett. B 176 (1986), 317.

    Article  ADS  Google Scholar 

  8. Gillibert, A. et al., Phys. Lett. B 192 (1987), 39.

    Article  ADS  Google Scholar 

  9. Orr, N. A. et al., Phys. Lett. B 258 (1991), 29.

    Article  ADS  Google Scholar 

  10. Detraz, C. et al., Phys. Rev. C 19 (1979), 164.

    Article  ADS  Google Scholar 

  11. Guillermaud-Mueller, D. et al., Nuclear Phys. A 426 (1984), 3.

    Google Scholar 

  12. Motobayashi, T. et al., Phys. Lett. B 346 (1995), 9.

    Article  ADS  Google Scholar 

  13. Campi, X. et al., Nuclear Phys. A 251 (1975), 193.

    Article  ADS  Google Scholar 

  14. Wildenthal, B. H. et al., Phys. Rev. C 28 (1983), 1343.

    Article  ADS  Google Scholar 

  15. Poves, A. et al., Nuclear Phys. A 571 (1994), 221.

    Article  ADS  Google Scholar 

  16. Warburton, E. K. et al., Phys. Rev. C 41 (1990), 1147.

    Article  ADS  Google Scholar 

  17. Werner, T. R. et al., Phys. Lett. B 335 (1994), 259;

    Article  ADS  Google Scholar 

  18. Werner, T. R. et al.,Nuclear Phys. A 597 (1996), 327.

    Article  ADS  Google Scholar 

  19. Retamosa, J. et al., Phys. Rev. C 55 (1997), 1266.

    Article  ADS  Google Scholar 

  20. Caurrier, E. et al., Phys. Rev. C 58 (1998), 2033.

    Article  ADS  Google Scholar 

  21. Ren, Z. et al., Phys. Lett. B 380 (1996), 241.

    Article  ADS  Google Scholar 

  22. Pfeiffer, B. et al., Z. Phys. A 357 (1997), 235.

    Article  ADS  Google Scholar 

  23. Sorlin, O. et al., Phys. Rev. C 47 (1993), 2941.

    Article  ADS  Google Scholar 

  24. Glasmacher, T. et al., Phys. Lett. B 395 (1997), 163.

    Article  ADS  Google Scholar 

  25. Sarazin, F. et al., Phys. Rev. Lett. 84 (2000), 5062.

    Article  ADS  Google Scholar 

  26. Audi, G. et al., Nuclear Phys. A 624 (1997), 1.

    Article  ADS  Google Scholar 

  27. Orr, N. A. and Mittig, W., unpublished.

    Google Scholar 

  28. Moller, P. and Nix, J. R., At. Data Nucl. Data Tables 59 (1995), 185.

    Article  ADS  Google Scholar 

  29. Ren, Z., RMF code, informations on request.

    Google Scholar 

  30. Sarazin, F. et al., In: APAC’2000 Proceedings.

    Google Scholar 

  31. Savajols, H., E364 GANIL proposal.

    Google Scholar 

  32. Haustein, P. E. (ed.), At. Data Nucl. Data Tables 39 (1988), 185.

    Google Scholar 

  33. Utsuno, Y. et al., to be published.

    Google Scholar 

  34. Tapper, R. J., Rep. Progr. Phys. 63 (2000), 1273.

    Article  ADS  Google Scholar 

  35. Berdermann, E. et al., preprint 2000–09 GSI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Savajols, H. (2001). The SPEG Mass Measurement Program at GANIL. In: Lunney, D., Audi, G., Kluge, HJ. (eds) Atomic Physics at Accelerators: Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1270-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1270-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5825-6

  • Online ISBN: 978-94-015-1270-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics